
Verifying Data Structures Using Jahob
Feride Cetin

Computer Science Masters Student
École Polytechnique F́ed́erale de Lausanne

1015 Lausanne, Switzerland
Email: feride.cetin@epfl.ch

Kremena Diatchka
Computer Science Masters Student

École Polytechnique F́ed́erale de Lausanne
1015 Lausanne, Switzerland

Email: kremena.diatchka@epfl.ch

Abstract—We have implemented some simple data structures
in Java, provided specifications for properties they must specify,
and attempted to verify that the implementation is correct with
respect to these specifications using the verification tool Jahob.
We have fully verified the implementations of a singly-linked list
with a header node and a queue. All methods of a singly-linked
cyclic list, doubly-linked cyclic list and leaf-linked tree also verify,
but these classes require further work to ensure the specifications
are correct in the initial state of the class. This report presents
a brief overview of data structure verification using Jahob, and
then continues with a detailed explanation of the specifications
we provided. We conclude by summarizing our contributions,
commenting on what we have learned, and suggesting directions
for future work.

I. I NTRODUCTION

This paper describes our project for the Software Analysis
and Verification class during the summer semester of 2007. We
chose to learn about the subject of data structure verification in
order to gain some insight into how much effort is required to
formally verify that a data structure implementation is correct
under all program executions. Achieving this goal means that,
even for a simple piece of code, one has to think about many
details and is forced to examine the implementation from all
possible angles. We hoped that this experience would help us
not only write better code in the future but also appreciate the
effort required to annotate a program with specifications and
why it is worth it to do so.

As outlined in [2], there are many good reasons why
program verification is an important field of active research.
Firstly, there has been progress in the development of tech-
niques for program verification such as abstract interpretation
and data-flow analysis, model checking, and advanced type
systems. We have been introduced to these methods in class,
and have seen that they may be useful as part of general
verification systems. Secondly, research has been making
advances in the fields of automated theorem proving and
decision procedures, which may be used to check the validity
of properties specified by the developer. Thirdly, advances
in hardware allow the use of sophisticated, computationally
intensive techniques for program verification. Finally, as com-
puters continue making their way into many aspects of our
lives, it is becoming increasingly important to attempt to use
the results of these research efforts to create safe software
with few errors to help save many headaches, money and,
most importantly, lives.

One approach to program verification is the modular ana-
lysis of dynamically allocated linked data structures. As de-
scribed in [2], such data structures are useful and thus common
in many programs; however, they may be difficult to reason
about, which means they are likely sources of errors which
cause software to behave in an undesirable way. This type of
analysis requires precise specification of program properties
and is therefore not well-suited for whole program verification.
The idea, then, is to reduce the number of errors in a program
by verifying that common components of the program behave
correctly.

These are the ideas that motivated the development of the
Jahob verification system, which is currently focusing on data
structure verification. However, the author of Jahob believes
that it may also be promising as a more general purpose
verification system [2]. Jahob is described in more detail in
the Related Work section.

The goal of our project was to implement some simple
linked data structures, provide their specifications, and use
Jahob to verify the implementation. In the following sections
we outline related work that helped us understand the process
of data structure verification and gain a better grasp of field
constraint analysis, which is a useful technique when it is
not possible to deterministically define the set of objects a
field may point to with respect to the backbone. We continue
with a small sample program which illustrates the idea of
data structure verification using developer-specified properties.
Then we present our modest contributions, and finish with a
discussion about the limitations we faced and directions for
future work.

RELATED WORK

a) Jahob: Jahob was developed by Viktor Kuncak and
his collaborators as part of his PhD work at MIT. The
following description of the Jahob system is mostly taken from
Section 1.3 and 1.4 from the thesis [2] which resulted from
his work.

Jahob is designed to be a usable verification system which
can easily be learned so that any programmer may begin using
it quickly. A subset of Java was chosen as the implementation
language because it is a familiar, imperative, memory-safe
language and existing Java tools can be used to write and
compile the programs. The specifications are provided as



special comments in the code. The chosen subset is sufficient
for implementing many data structures.

The programmer provides the specification of the program
using classical higher-order logic(HOL) formulas, which is
a notation that most computer scientists and mathematicians
are comfortable with. The syntax is identical to that of
the language of the theorem proving environment [4]. The
advantage of this is that Isabelle can be used to prove formulas
that Jahob cannot prove automatically.

Jahob is designed for modular verification of data structures.
The programmer can reason about the modular components
(classes and procedures) independently, verifying each pro-
cedure separately and then assume the correctness of the
procedures when verifying the whole program. Reasoning
about a small fragment of a program at a time makes the
verification process easier and more scalable, and allows the
use of very specific, expressive properties.

When verifying procedures, the developer specifies proce-
dure contracts as pre and post conditions and a modifies clause.

• Thepreconditions, written as arequires clause, spec-
ify the properties that should be true at the entry point of
the procedure

• The frame condition, written as amodifies clause,
specifies which parts of the program state the procedure
is allowed to modify during its execution

• The postconditions, written as anensures clause,
specify the properties that should be true after the proce-
dure is finished executing.

Jahob also allows the use of specification variables to
support data abstraction. These variables are like concrete
Java variables but they exist only to help the programmer
reason about the abstract properties of the data structure (as
opposed to its concrete implementation) in order to simplify
the verification process. Specification variables can be used to
denote sets, functions and relations.

We conclude the introduction to Jahob by summarizing the
overview of Jahob’s approach to data structure verification
presented in Section 1.4 of [2]. Jahob takes the HOL formulas
provided in the specification of the program and splits them
into a conjunction of independent smaller formulas. Each HOL
conjunct is approximated by a formula in a logic which is
easier to prove and then potentially different reasoning proce-
dures are used to verify these approximations. There are three
techniques for performing the approximation: translation to
first-order logic, field constraint analysis with monadic second-
order logic over trees, and Boolean Algebra with Presburger
Arithmetic (BAPA).

First-order theorem provers such as SPASS [1] or E [5] can
act as decision procedures for formulas which are translatable
to first-order logic, and Jahob can use them to prove many
data structure properties that fall in this category. The second
technique, and the one we examined most closely in our
project, is field constraint analysis. This technique allows the
use of decision procedures designed for a restricted set of
data structures to be used for a wider range of data structures.
In particular, Jahob extends the use of monadic second order

logic over trees so that it can be applicable to structures
with non-deterministic fields, for example skip lists or linked
combinations of data structures. Field constraint analysis is
described in more detail in the corresponding section of the
Related Work. The third technique allows reasoning about sets
of elements and cardinalities of sets. Using BAPA reasoning
makes it possible to specify relationships between the sizes of
data structures or to specify data structure size using integer
variables.

We now present the Pointer Assertion Logic Engine (PALE),
which is a tool for data structure verification similar tool to
Jahob.

b) The Pointer Assertion Logic Engine (PALE):The
Pointer Assertion Logic Engine is a framework presented in
[3] for verifying partial specifications of programs in order
to catch type and memory errors and check data structure
invariants. Unlike the previous specialized tools which were
limited to verify only special data structures like lists or trees,
the technique used in PALE can verify any data structure that
can be expressed as a graph type which is a tree-shaped data
structure with extra pointers. Moreover, it is still as fast as
restricted verification tools.

In this method, programs are first annotated with partial
specifications expressed in Pointer Assertion Logic, a notation
for expressing properties of the program store. Then, the
programs and partial specifications are encoded as formulas
in monadic second-order logic. Finally, MONA tool is used to
check the validity of these formulas, which also can provide
explicit counterexamples to invalid formulas. In order to use
PALE for verification, explicit loop and function call invariants
should be provided in the program annotations. In PALE
every statement of a given program is analyzed only once
therefore, it is highly modular. This tool is implemented for
the verification of safety-critical data-type algorithms, where
the cost of annotating a program with invariants is justified by
the gain from automatic verification of complex properties of
the program.

However, PALE has a restriction for the verification of
data structures because it requires every pointer field to point
to exactly one object determined by the backbone of the
data structure at any time during the program execution.
This restriction prevents PALE tool from being used for the
verification of data structures with non-deterministic pointer
fields such as skip lists which have random pointer fields.
However, the next method that we will describe in this report,
Field Constarint Analysis, over comes this restriction.

c) Field Constraint Analysis:Field constraint analysis
is a technique presented in [6] for verifying data structure
invariants. A field constraint is a formula specifying a set of
objects to which a field can point. Field constraints method
first verifies the backbone of the data structure and then verifies
the constraints on fields that cross-cut the backbone in arbitrary
ways. This method enables the application of decidable logics
to data structures which were originally beyond the scope of
these logics. In previously implemented tools including PALE,
such cross-cutting fields could only be verified when they were



uniquely determined by the backbone, which significantly
limits the range of analyzable data structures.

With field constraint analysis it is possible to verify the
invariants for data structures such as skip lists because it per-
mits non-deterministic field constraints on cross-cutting fields.
Nondeterministic field constraints also enable the verification
of invariants between different data structures, which provides
an expressive generalization of static type declarations. An
implementation of this technique is presented in [6] which was
implemented as a part of a symbolic shape analysis deployed
in the context of the Hob system (predecessor of Jahob)
for verifying data structure consistency. This implementation
allows verification of data structures with non-deterministic
fields and invariants between different data structures that were
impossible to verify with similar techniques.

A SMALL EXAMPLE

We use a short method written in Java to illustrate the
approach of data structure verification we have taken, and to
motivate its usefulness. Consider the following method which
adds a node to a doubly-linked list:

public static void add(Node n) {
n.next = first.next;
n.prev = first;
first.next.prev = n;
first.next = n;

}

Such pointer manipulation is tedious and easy to get wrong,
especially without spending some time to carefully sketch
out exactly what each operation is doing. However, if the
programmer takes the time to reason about the properties that
a doubly-linked list should satisfy (for example, the backbone
nodes should form a tree), then the main part of annotating
the above method is specifying that the node being added was
not in the list before the method was called, and that it is in
the list after the method is finished. Then running Jahob on
the above code will tell you if the implementation conforms
to its specifications.

The idea is that reasoning about the properties of a program
that should always hold is a more intuitive and more tractable
process than attempting to manually go through the code and
consider all possible effects of each of the operations.

II. RESULTS

We now present the main work of the project - our attempts
at verifying increasingly more complicated data structures. We
begin with a simple linked list with a header node, then move
to a cyclic singly and doubly linked lists and continue with
queue with a header node and instantiable queue and then
finish with a leaf-linked tree. In most of the implementations
all the class variables and methods are static because for
the purposes of verification we assume there is a single
instance of the class. The idea is that it is most important
to provide the specification and verify the implementation for

a single instance, and the specification can then be extended, if
necessary, to account for multiple instances of the same class.

While working on the project, we were made aware of the
difference between complete and partial specifications, and the
trade-offs one must consider when deciding the amount of
detail to provide in a specification. Acompletespecification is
one that characterizes precisely what the code does; any other
specification which leaves room for ambiguity and uses some
level of abstraction to describe the properties of the program
is called apartial specification.

Here is a list of advantages and disadvantages ofpartial
specificationsthat our professor reminded us about:

+ easier to write
+ easier to change implementation later
+ simplifies reasoning about the code (for example re-

placing a linked structure with a set), whereas a full
specification would make it as difficult as inlining the
implementation.

- the fact that the code meets the partial specification does
not guarantee it is correct

- may not be sufficient to prove some properties (for
example, if a property relies on the order of elements,
and the structure is approximated with a set).

We kept these points in mind as we wrote the specifications
for the programs we were trying to verify. In some cases,
for simple methods, it was easy to write more complete
specifications, but in some other instances we opted to abstract
away some details and focus on specifying the most important
properties.

JAHOB SPECIFICATION CONSTRUCTS

The following explanations about the features and specifi-
cation constructs in Jahob are taken from Section 3.2 of [2].

Claimed fields: Claimed fields allow the fields of one
class to be declared local to another class. Semantically, a field
is a function from an object to an object, so a field claimed
by a classC is like the function is a private variable declared
in C.

NoteThat statement:A NoteThat e statement is the
same as anAssert e followed by anAssume e. It is sound
because Jahob checkse before assuming it, and it can usee
as a lemma when verifying subsequent formulas.

Ghost specification variables:A ghost variable is inde-
pendent from any other variables and the only way its value
can be changed is by a specification assignment of the form
ghost var := e in the body of a procedure, wheree is a valid
HOL formula of the same type as the ghost variable.

L INKED LIST WITH HEADER NODE

In the following sections, we describe the specifications of
the classes we worked on verifying using sentences rather than
HOL formulas for readability. The formulas expressing the
described properties can be found in the code submitted with
this paper.

First we implemented a simple linked list class with a header
node, which has three methods:init() , add(Node n) and



member(Node n) . This very simple implementation is only
around 20 lines of code, and requires about as many lines of
specification so that Jahob verifies it.

The helper classNode only contains anext field. The
List class only has one public variablefirst , which should
point to the header node of the list. Since procedure contracts
of public procedures cannot mention private variables, we left
first as public for convenience of writing the procedure
contracts.

Global specification variables

content: A set of objects which includes all the nodes
reachable from the node after the header node via thenext
field.

pointed: A function from object to boolean which returns
true if the another node’snext field points to the object.

Class invariants

First unaliased: States that no other node’snext field
should point to the header node.

isTree: States that the list has the properties of a tree with
the next field as the backbone.

Procedure contracts and other annotations

init():
requires: the header node has not been instantiated
modifies: first

ensures:the header node has been instantiated and con-
tent is empty

add(Node n):
requires:

- the header node has been instantiated
- the node being added is not the header node
- the node being added is not already a member of the list
- the reference to the node is not null
- the next field of the node being added does not point

to anything
- no other node points to the node being added (pointed

specification variable used)

modifies:content specification variable andpointed
specification variable (because the node being added is now
being pointed to)

ensures:the node being added is inserted into the list
member(Node n):

requires:

- the header node has been instantiated
- the node being added is not the header node

modifies: nothing is modified
ensures:the method returns true if the node passed in is

in the list, and false otherwise

Local specification variables:The ghost variableseen
is a set of objects which have been “touched“ as we walk over
the linked list checking each node against the parameter node.
One node gets added to it at every iteration of the while loop.
After the while loop, aNoteThat statement expresses the
fact that if we have walked through all the nodes and none
of them are equal to the parameter node, then theseen set
should be equivalent to thecontent set (i.e. we must have
checked all the nodes in the list before we are sure we can
say that the parameter node is not in the list).

Loop invariant:

- the current node we are examining must either be null or
a member of the list

- seen must contain all the nodes up to the current node,
and no nodes in the list after the current node

- none of the nodes inseen must be equal to the parameter
node (otherwise we should already have returnedtrue )

- the node being added is not the header node

QUEUE WITH HEADER NODE

We implemented aQueue class, which is quite similar to
the List class, but it has the methodsenqueue(Node n)
which inserts a node at the end of the list (instead of at the
beginning, like theadd(Node n) method of theList class)
anddequeue() , which removes a node from the front of the
list. To facilitate this operation, the class has privatelast field
of type Node.

The specification variables are the same as that for theList
class, with the following additions:

Global specification variables

is Last: Returns true if a node is the last in the list (i.e. its
next field is null), and false otherwise.

Class invariants

empty List: Specifies that a queue is empty if both the
first and thelast nodes are null (if one of them is null,
then the other must be too).

Last is last: Ensures that thelast field really points to
the last node in the queue.

Procedure contracts and other annotations

The procedure contract forenqueue(Node n) is the
same as theadd(Node n) of the List class.

dequeue():
requires: does not require anything
modifies: first , content andpointed fields
ensures:if there is no header node or the header node is

the only element in the queue, then the method returns null
and content does not get modified. If there is at least one
element besides the header node in the queue, then the node
returned is a member of the queue and a node gets removed
from the queue.

This is an example of a partial specification, because we
do not verify that the node removed is the last one in the
queue, only that a node does in fact get removed. If a



Fig. 1. Structure of a singly-linked cyclic list

particular application requires that specifically the last node
gets removed, then the specification would have to be modified
to include this property.

CYCLIC SINGLY-LINKED LIST

The next data structure that we implemented and verified is
a cyclic singly-linked list with a header node, which has three
methods:init() , add(Node n) andmember(Node n) .
Similar to the linked list structure we described above, it is a
simple implementation which requires about the same amount
of specifications. Its structure is illustrated in Figure 1.

The helper classNode only contains anext field. The
List class only has one public variablefirst , which should
point to the header node of the cyclic list. Since procedure
contracts of public procedures cannot mention private vari-
ables, we leftfirst as public for convenience of writing the
procedure contracts.

Verification Status

All the methods in this class verify individually, but the
initial state of the class does not meet the specifications. In
particular, the problem is with thenext1field invariant
and with the field constraint. The class verifies in the initial
state if thenext1field invariant is removed and the field
constraint is changed to:

ALL x y.
x : Object.alloc & Node.next x = y -->
((last x --> y = first) &
(˜ last x --> y = x..next1))

However, adding the x : Object.alloc
condition makes the verification of theinit() and
member(Node n) methods fail. We did not have time to
investigate the reason for this so we mention it as one of the
easy possibilities for further work.

Global specification variables

next1: A ghost specification variable from object to
object which defines the backbone of the cyclic list. Basically,
next1 of an object in the cyclic list is equal to thenext
element following that object in the cyclic list. If the input
object is the last element of the cyclic list, then itsnext1 is
set to null.

content: A set of objects which includes all the nodes
reachable from the node after the header node via thenext1
specification variable.

isolated: A function from object to boolean which returns
true if the input object’snext1 is null and it is not pointed
by thenext1 of any not null object.

last: A function from object to boolean which returns
true if the input object is not null and reachable from the
header node using next1 but itsnext1 is equal to null. In
short, it returns true only if the input object is the last element
of the cyclic list.

Class invariants

next1field: States that any unallocated object should be
isolated.

isTree: States that the backbone of the cyclic list defined
by the next1 ghost specification variable has the properties
of a tree.

First unaliased: States that no node’snext1 should
point to the header node.

Next Field Constraint:States that the next field of any
object in the cyclic list should be equal to the next1 of that
object unless it is the last element of the cyclic list. The next
field of the last element in the list should point to the header
node.

Procedure contracts and other annotations

init():
requires: the header node has not been instantiated
modifies: first , content , isolated
ensures:the header node has been instantiated and con-

tent is empty
add(Node n):

requires:

- the header node has been instantiated
- the node being added is not the header node
- the node being added is not already a member of the list
- the reference to the node is not null
- the node being added is isolated

modifies: content specification variable and
isolated specification variable (because the node being
added is now being pointed to and its next1 also points to
another node)

ensures:the node being added is inserted into the list
member(Node n):

requires:

- the header node has been instantiated
- the node being added is not null

modifies: nothing is modified
ensures:the method returns true if the node passed in is

in the cyclic list, and false otherwise
Local specification variables:The ghost variableseen is

a set of objects which have been “touched“ as we walk over
the cyclic singly-linked list checking each node against the
parameter node. One node gets added to it at every iteration of
the while loop. After the while loop, aNoteThat statement
expresses the fact that if we have walked through all the nodes
and none of them are equal to the parameter node, then the
seen set should be equivalent to thecontent set (i.e. we
must have checked all the nodes in the list before we are sure
we can say that the parameter node is not in the list).



Loop invariant:

- the current node we are examining must either be the
header node or a member of the list

- seen must contain all the nodes up to the current node,
and no nodes in the list after the current node

- if the current node is the header node thenseen must
contain all the nodes in the cyclic list

- none of the nodes inseen must be equal to the parameter
node (otherwise we should already have returnedtrue )

CYCLIC DOUBLY-LINKED LIST

Then we implemented and verified a very similar data
structure, cyclic doubly-linked list with a header node,
which also has three methods:init() , add(Node n) and
member(Node n) . Similar to cyclic singly-linked list struc-
ture we have verified, cyclic doubly-linked list has a simple
implementation but it requires slightly more specifications.

The helper classNode containsnext andprev fields.
TheList class only has one public variablefirst , which

should point to the header node of the cyclic doubly-linked list.
Since procedure contracts of public procedures cannot mention
private variables, we leftfirst as public for convenience of
writing the procedure contracts.

Global specification variables

Global specification variables of the cyclic doubly-linked
list are same as the ones we used for the cyclic singly-linked
list.

Class invariants

For cyclic doubly-linked list we used the following invari-
ants together with the class invariants we have in cyclic singly-
linked list.

Prev Field Constraint:States that prev field of the last
element in the list should point to the header node and all the
nodes pointed by the prev field of another node should point
to the same node by their next field.

contentCheck:States that if an objects next field is equal
to the objects next1 then the object pointed by next must be
an element of the content.

Procedure contracts and other annotations

The procedure contracts and annotations ofinit() and
add(Node n) methods of cyclic doubly-linked list are same
as the ones we used for the cyclic singly-linked list.

member(Node n):
requires:

- the header node has been instantiated
- the node being added is not null

modifies: nothing is modified
ensures:the method returns true if the list is not empty

and the node passed in is in the cyclic list, and false otherwise

Local specification variables:The ghost variableseen is
a set of objects which have been “touched“ as we walk over
the cyclic singly-linked list checking each node against the
parameter node. One node gets added to it at every iteration of
the while loop. After the while loop, aNoteThat statement
expresses the fact that if we have walked through all the nodes
and none of them are equal to the parameter node, then the
seen set should be equivalent to thecontent set (i.e. we
must have checked all the nodes in the list before we are sure
we can say that the parameter node is not in the list).

Loop invariant:

- the current node we are examining must either be the
header node or a member of the list

- seen can be empty for the initial case otherwise it must
contain all the nodes up to the current node, and no nodes
in the list after the current node

- if the current node is the header node thenseen must
contain all the nodes in the cyclic list

- none of the nodes inseen must be equal to the parameter
node (otherwise we should already have returnedtrue )

LEAF-LINKED TREE

The last data structure we have implemented is leaf-linked
tree, whose backbone is a binary search tree and whose leaves
form a doubly-linked list (see Figure 2). Our motivation for
choosing this data structure is its broad functionality and better
complexity for some functions achieved by its special structure
which combines the tree structure with doubly-linked list. In
our implementation all the values inserted in the tree are held
as leaves so functions like search, insertion and deletion whose
complexity is linear for linked lists islog(N) in the average
case for leaf-linked tree. In addition, it is much easier to
traverse all the values using the doubly-linked list of leaves
compared to a normal tree.

In our implementation we have six methods:
isEmpty() , isLeaf(Node n) , getRoot() ,
findSmallestLeaf() , leafUpdate(Node n) ,
add(int v) .

isEmpty() simply returns true if there is no value inserted
in the leaf-linked tree, otherwise it returns false.

isLeaf(Node n) returns true if the input Node is a leaf
in the leaf-linked tree, otherwise it returns false.

getRoot() returns the current root node.
findSmallestLeaf() returns the leaf node with the

smallest value in the leaf-linked tree.
add(int v) inserts the input value in the backbone

binary search tree as a value of a leaf node.
leafUpdate(Node n) is called insideadd(int v)

method and it updates the doubly-linked list of leaves after
the insertion of a new value.

The helper classNode containsright , left , parent ,
next , prev , v fields.

Verification Status

All the methods in this class verify individually, but the
initial state of the class does not meet the specifications. In



Fig. 2. Structure of a leaf-linked tree

particular, the problem is with theLeftNotRight invariant
and with the parent field constraint. If those are slightly
changed as the following by adding the condition of the objects
being members of nodes and the root case in the parent field
constraint, then the initial state of the class verifies but the
leaf related functions do not verify probably because of the
temporary violation of the invariants.

invariant LeftNotRight:
"ALL x. x : nodes -->
x..Node.left ˜= x..Node.right";)

invariant ParentFieldConstraint:
"ALL x y. x:nodes & Node.parent x = y -->
((x = root --> y = null) &
(x ˜= root -->
(x ˜= null -->
((y..Node.left = x |

y..Node.right = x) &
(y : internalNodes)))))";

Time did not allow us to attempt to verify order properties
of the tree, although there are some examples of such speci-
fications which are fairly long and complex.

Verifying next node

We created a specification which states that for a leafL
in the linked list, the node that itsnext field is pointing to
is the leaf that is next to it in the tree structure (henceforth
referred to as theneighbor of L). For this purpose, we first
implemented an algorithm which finds the neighbor of a leaf.
Then we created a specification variable which is a function
that checks whether a node’snext field is set correctly when
that node is added to the tree. The algorithm we used in our
specification is presented in Algorithm 1.

Global specification variables

Nodes: a set of objects which contains all the nodes in the
tree reachable from the root node via theleft or right
fields.

Content: the integer values of the nodes in theNodes set.
Internal nodes: all those nodes for which at least one of

the left or right nodes is not null

input : Node n
output: Neighbor of n in the tree
p← parent of n;1

ancestors← all nodes reachable from n via parent2

fields;
descendants← all nodes in subtree rooted at n;3

result← null;4

if p is null then5

result← null;6

7

else8

if n is left child of pthen9

p.r ← right child of p;10

result← SmallestNode(p.r) ;11

else12

splitNodes← all ancestors whose right13

children are not ancestors ;
firstSplitNode← node insplitNodes14

which does not contain any other members of
splitnodes in its descendants ;
s.r ← right child of firstSplitNode;15

result← SmallestNode(s.r) ;16

end17

end18

return result;19

Algorithm 1 : Algorithm to find the neighboring leaf
of a leaf

Left nodes(Node n):the set of nodes reachable fromn via
the left field, includingn. Needed fornextLeaf function.

Ancestors (Node n): the set of nodes reachable fromn
via the parent field, including n. Needed fornextLeaf
function.

Descendants (Node n):the set of nodes reachable fromn
via the left or right fields, not includingn (equivalent to
the nodes contained in a subtree rooted atn minus n itself.
Needed fornextLeaf function.

Split nodes(Node n): contains all the nodes which are
members ofancestors of n but whoseright child is
not a member ofancestors of n. Needed fornextLeaf
function.

Split node(Node n): the node which is a member of
splitNodes of n and whosedescendants are not mem-
bers ofsplitNodes of n. Needed fornextLeaf function.

is left child (Node n): returns true ifn is a left child of its
parent, and false otherwise. Needed fornextLeaf function.

is smallest (Node n, Node aRoot):returns true ifn is
the left-most leaf of the subtree rooted ataRoot , and false
otherwise. Needed fornextLeaf function.

is smallest from root (Node n):returns true ifn is the
left-most leaf of the whole tree rooted atroot , and false
otherwise. This was added to so that it may be checked that
the public methodfindSmallestLeaf() method returns
the correct result without includingroot (which is a private
variable) in the procedure contract.



next Leaf (Node n, Node nnext):this function returns
true if nnext is the neighbor ofn, and false otherwise. This
function basically implements Algorithm 1.

Class invariants

Tree invariant: the structure formed by the nodes connected
by the left and right fields satisfies the tree properties.

Left not right: the left andright fields of a node must
not point to the same node.

Root not pointed: if root is not null then no node exists
whoseleft , right , next or prev fields point to root.

Root parentless: if root is not null then its parent field
should be null.

Field constraint on all Node fields:all Node fields must
point to nodes in this tree (i.e. nodes that are members of the
Nodes set).

Field constraint on parent field: if a nodex has a parent,
then there exists a nodey whoseleft or right field points
to x .

Procedure contracts and other annotations

For brevity, we do not include here the small methods
isEmpty() , isLeaf() andgetRoot() because they are
simple to verify and their specifications are easy to understand.

findSmallestLeaf():
ensures: the return value is either null or a the

left-most leaf node of the tree (the specification variable
isSmallestFromRoot(res) is used here)

Loop invariant: While traversing the binary tree to find
the smallest leaf node, we use a temporary node. Since the
loop continues as long as the temporary node is not a leaf, the
loop invariant ensures that the temporary node is an internal
node and that it is reachable via theleft fields starting at
root in each iteration.

leafUpdate(Node n):
requires: n is a leaf node that has a parent node
ensures:the next field of n is n’s neighbor in the tree.

add(int v):
requires: v is not a value in the content set (This can be

modified if the programmer decides that a value is allowed to
occur in the list more than once)

modifies: content , nodes , internalNodes
ensures:v was added tocontent
Loop invariant: While traversing the binary tree to find

the correct place to insert the new node, we use a temporary
node. The loop invariant checks if the temporary node is a
member ofnodes in each iteration.

III. C ONCLUSION

The final status of our project is as follows: we have fully
verified the implementations of a singly-linked list with a
header node and a queue, and all methods of a singly-linked
cyclic list, doubly-linked cyclic list and leaf-linked tree also
verify, but these classes require further work to ensure the
specifications are correct in the initial state of the class.

When we began working on this project, we implemented
very simple data structures which were easy to implement

correctly. Therefore, as we were writing the specifications for
those implementations, we were mostly sure they were correct,
and a problem with the verification usually resulted from a
problem with the specification rather than with the implemen-
tation. However, when we were writing the specifications for
the leaf-linked tree (especially the neighbor node algorithm),
we actually found some bugs in the implementation which
we had to fix before the the methods would verify. In this
case we really saw the utility of using a verification system
like Jahob to verify data structures. It was interesting trying
to get both the specification and the implementation correct,
because thinking about them at the same time helped us realize
mistakes in both. This experience made us realize that although
it is a time-consuming and frustrating activity, annotating a
program with specifications and checking whether it verifies
is actually useful and helpful, even to ordinary programmers
like ourselves.

We enjoyed using Jahob because we were already familiar
with HOL, so we did not have too many problems with the
syntax of the specifications. Another positive aspect of Jahob
is its modular approach to data structure verification; verifying
fragments of code independently made the task of verifying
an entire data structure much easier.

Our main criticism regarding the use of Jahob for data
structure verification is the fact that the automation starts
to break down even when trying to prove some properties
that at first glance seem simple. Some programs require more
specifications that actual code, and although we mentioned that
we saw the utility in doing this, there is a limit to how much
time and effort a programmer is willing to spend to ensure
the complete correctness of his/her implementation. However,
we note that for most of the project we were Jahob beginners;
more experienced programmers and Jahob users could find a
tool like Jahob even more helpful than we did.

This project has many possibilities for further work, as we
just scratched the surface of verifying simple data structures.
Since our work was incomplete, one could continue this
project by fully verifying the cyclic list classes and the leaf-
linked tree (all methodsand the initial state). A following step
could be working on verifying instantiable classes. We briefly
considered this with the queue class, but had some problems
and decided we would learn more if we concentrated on ver-
ifying classes which have a single instance. Furthermore, we
realize that Jahob could be used for verifying more advanced
programs, and for specifying more precise properties. It would
be interesting to see the kind of implementations for which
using Jahob wouldnot be appropriate (because of time or
complexity of specifications, for example), so that its utility
could be determined more concretely.

In conclusion, we have had a positive experience with
this project, because we were forced to critically examine
every aspect of our implementation as we were writing the
specifications. This kind of attention to detail will be useful
in any programming work we do in the future, even if we are
not formally verifying the program using a verification tool
such as Jahob.



REFERENCES

[1] Max Planck Institut Informatik. Spass: An automated theorem prover for
first-order logic with equality.http://spass.mpi-sb.mpg.de/.

[2] Viktor Kuncak. Modular Data Structure Verification. PhD thesis, 2007.
[3] Anders M&#248;ller and Michael I. Schwartzbach. The pointer assertion

logic engine. InPLDI ’01: Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation, pages
221–231, New York, NY, USA, 2001. ACM Press.

[4] Lawrence C. Paulson and Tobias Nipkow. Isabelle theorem proving
environment.http:// isabelle.in.tum.de/.

[5] Stephan Sculz. The e equational theorem prover.http://www4.informatik.
tu-muenchen.de/∼schulz/WORK/eprover.html.

[6] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. On field
constraint analysis. InProc. Int. Conf. Verification, Model Checking,
and Abstract Interpretation, 2006., 2006.


