Verifying Data Structures Using Jahob

Feride Cetin Kremena Diatchka
Computer Science Masters Student Computer Science Masters Student
Ecole Polytechnique é&¢Erale de Lausanne Ecole Polytechnique &Erale de Lausanne
1015 Lausanne, Switzerland 1015 Lausanne, Switzerland
Email: feride.cetin@epfl.ch Email: kremena.diatchka@epfl.ch

Abstract—We have implemented some simple data structures One approach to program verification is the modular ana-
in Java, provided specifications for properties they must specify, |ysis of dynamically allocated linked data structures. As de-

and attempted to verify that the implementation is correct with —geyipeq in [2], such data structures are useful and thus common
respect to these specifications using the verification tool Jahob. .

We have fully verified the implementations of a singly-linked list In many p_rograms, however, th_ey may be difficult to reaspn
with a header node and a queue. All methods of a singly-linked about, which means they are likely sources of errors which
cyclic list, doubly-linked cyclic list and leaf-linked tree also verify, cause software to behave in an undesirable way. This type of
but these classes require further work to ensure the specifications analysis requires precise specification of program properties
are correct in the initial state of the class. This report presents and is therefore not well-suited for whole program verification.

a brief overview of data structure verification using Jahob, and The id th is t d th b f .
then continues with a detailed explanation of the specifications € 1aea, then, IS 1o reduce the number of errors in a program

we provided. We conclude by summarizing our contributions, DY verifying that common components of the program behave
commenting on what we have learned, and suggesting directions correctly.
for future work. These are the ideas that motivated the development of the
Jahob verification system, which is currently focusing on data
structure verification. However, the author of Jahob believes
This paper describes our project for the Software Analysisat it may also be promising as a more general purpose
and Verification class during the summer semester of 2007. Wéification system [2]. Jahob is described in more detail in
chose to learn about the subject of data structure verificationtiie Related Work section.
order to gain some insight into how much effort is required to The goal of our project was to implement some simple
formally verify that a data structure implementation is corre¢ihked data structures, provide their specifications, and use
under all program executions. Achieving this goal means thghhob to verify the implementation. In the following sections
even for a simple piece of code, one has to think about mawg outline related work that helped us understand the process
details and is forced to examine the implementation from &f data structure verification and gain a better grasp of field
possible angles. We hoped that this experience would helpdéhstraint analysis, which is a useful technique when it is
not only write better code in the future but also appreciate th@t possible to deterministically define the set of objects a
effort required to annotate a program with specifications afidld may point to with respect to the backbone. We continue
why it is worth it to do so. with a small sample program which illustrates the idea of
As outlined in [2], there are many good reasons Whyata structure verification using developer-specified properties.
program verification is an important field of active researcithen we present our modest contributions, and finish with a
Firstly, there has been progress in the development of teefiscussion about the limitations we faced and directions for
nigues for program verification such as abstract interpretatiQfture work.
and data-flow analysis, model checking, and advanced type
systems. We have been introduced to these methods in class, RELATED WORK
and have seen that they may be useful as part of general
verification systems. Secondly, research has been making a) Jahob: Jahob was developed by Viktor Kuncak and
advances in the fields of automated theorem proving aht collaborators as part of his PhD work at MIT. The
decision procedures, which may be used to check the validiollowing description of the Jahob system is mostly taken from
of properties specified by the developer. Thirdly, advanc&ection 1.3 and 1.4 from the thesis [2] which resulted from
in hardware allow the use of sophisticated, computationalfys work.
intensive techniques for program verification. Finally, as com- Jahob is designed to be a usable verification system which
puters continue making their way into many aspects of ooan easily be learned so that any programmer may begin using
lives, it is becoming increasingly important to attempt to usequickly. A subset of Java was chosen as the implementation
the results of these research efforts to create safe softwkmeguage because it is a familiar, imperative, memory-safe
with few errors to help save many headaches, money atehguage and existing Java tools can be used to write and
most importantly, lives. compile the programs. The specifications are provided as

I. INTRODUCTION

special comments in the code. The chosen subset is sufficilgic over trees so that it can be applicable to structures
for implementing many data structures. with non-deterministic fields, for example skip lists or linked

The programmer provides the specification of the progracombinations of data structures. Field constraint analysis is
using classical higher-order logic(HOL) formulas, which islescribed in more detail in the corresponding section of the
a notation that most computer scientists and mathematiciaelated Work. The third technique allows reasoning about sets
are comfortable with. The syntax is identical to that off elements and cardinalities of sets. Using BAPA reasoning
the language of the theorem proving environment [4]. Thaakes it possible to specify relationships between the sizes of
advantage of this is that Isabelle can be used to prove formutiega structures or to specify data structure size using integer
that Jahob cannot prove automatically. variables.

Jahob is designed for modular verification of data structures.\WWe now present the Pointer Assertion Logic Engine (PALE),
The programmer can reason about the modular componentsich is a tool for data structure verification similar tool to
(classes and procedures) independently, verifying each pdehob.
cedure separately and then assume the correctness of the b) The Pointer Assertion Logic Engine (PALEJhe
procedures when verifying the whole program. Reasonifpinter Assertion Logic Engine is a framework presented in
about a small fragment of a program at a time makes t[@ for verifying partial specifications of programs in order
verification process easier and more scalable, and allows tbecatch type and memory errors and check data structure
use of very specific, expressive properties. invariants. Unlike the previous specialized tools which were

When verifying procedures, the developer specifies prodgnited to verify only special data structures like lists or trees,
dure contracts as pre and post conditions and a modifies clauke.technique used in PALE can verify any data structure that

« Thepreconditions, written as aequires clause, spec- can be expressed as a graph type which is a tree-shaped data

ify the properties that should be true at the entry point afructure with extra pointers. Moreover, it is still as fast as

the procedure restricted verification tools.

o The frame condition, written as amodifies clause, In this method, programs are first annotated with partial
specifies which parts of the program state the procedwspecifications expressed in Pointer Assertion Logic, a notation
is allowed to modify during its execution for expressing properties of the program store. Then, the

« The postconditions written as anensures clause, programs and partial specifications are encoded as formulas
specify the properties that should be true after the prode-monadic second-order logic. Finally, MONA tool is used to
dure is finished executing. check the validity of these formulas, which also can provide

Jahob also allows the use of specification variables @xplicit counterexamples to invalid formulas. In order to use

support data abstraction. These variables are like concrB#lLE for verification, explicit loop and function call invariants
Java variables but they exist only to help the programmehould be provided in the program annotations. In PALE
reason about the abstract properties of the data structure €egry statement of a given program is analyzed only once
opposed to its concrete implementation) in order to simplifjnerefore, it is highly modular. This tool is implemented for
the verification process. Specification variables can be usedhe verification of safety-critical data-type algorithms, where
denote sets, functions and relations. the cost of annotating a program with invariants is justified by
We conclude the introduction to Jahob by summarizing thike gain from automatic verification of complex properties of
overview of Jahob’s approach to data structure verificatidhe program.
presented in Section 1.4 of [2]. Jahob takes the HOL formulasHowever, PALE has a restriction for the verification of
provided in the specification of the program and splits thedata structures because it requires every pointer field to point
into a conjunction of independent smaller formulas. Each HGh exactly one object determined by the backbone of the
conjunct is approximated by a formula in a logic which islata structure at any time during the program execution.
easier to prove and then potentially different reasoning procEdis restriction prevents PALE tool from being used for the
dures are used to verify these approximations. There are thveefication of data structures with non-deterministic pointer
techniques for performing the approximation: translation fields such as skip lists which have random pointer fields.
first-order logic, field constraint analysis with monadic seconétowever, the next method that we will describe in this report,
order logic over trees, and Boolean Algebra with Presburgéeld Constarint Analysis, over comes this restriction.
Arithmetic (BAPA). ¢) Field Constraint Analysis:Field constraint analysis
First-order theorem provers such as SPASS [1] or E [5] cé a technique presented in [6] for verifying data structure
act as decision procedures for formulas which are translatableariants. A field constraint is a formula specifying a set of
to first-order logic, and Jahob can use them to prove maabjects to which a field can point. Field constraints method
data structure properties that fall in this category. The secofist verifies the backbone of the data structure and then verifies
technique, and the one we examined most closely in atine constraints on fields that cross-cut the backbone in arbitrary
project, is field constraint analysis. This technique allows thveays. This method enables the application of decidable logics
use of decision procedures designed for a restricted sett@fdata structures which were originally beyond the scope of
data structures to be used for a wider range of data structutkese logics. In previously implemented tools including PALE,
In particular, Jahob extends the use of monadic second ordach cross-cutting fields could only be verified when they were

uniquely determined by the backbone, which significantlg single instance, and the specification can then be extended, if

limits the range of analyzable data structures. necessary, to account for multiple instances of the same class.
With field constraint analysis it is possible to verify the While working on the project, we were made aware of the

invariants for data structures such as skip lists because it pdifference between complete and partial specifications, and the

mits non-deterministic field constraints on cross-cutting fieldsade-offs one must consider when deciding the amount of

Nondeterministic field constraints also enable the verificatiatetail to provide in a specification. @ompletespecification is

of invariants between different data structures, which providese that characterizes precisely what the code does; any other

an expressive generalization of static type declarations. Apecification which leaves room for ambiguity and uses some

implementation of this technique is presented in [6] which wdevel of abstraction to describe the properties of the program

implemented as a part of a symbolic shape analysis deploysdalled apartial specification.

in the context of the Hob system (predecessor of Jahob)Here is a list of advantages and disadvantagepaofial

for verifying data structure consistency. This implementatiaspecificationsthat our professor reminded us about:

allows verification of data structures with non-deterministic + easier to write

fields and invariants between different data structures that were- easier to change implementation later

impossible to verify with similar techniques. + simplifies reasoning about the code (for example re-

placing a linked structure with a set), whereas a full

specification would make it as difficult as inlining the

We use a short method written in Java to illustrate the jmplementation.

approach of data structure verification we have taken, and t0. e fact that the code meets the partial specification does
motivate its usefulness. Consider the following method which guarantee it is correct

A SMALL EXAMPLE

adds a node to a doubly-linked list: - may not be sufficient to prove some properties (for
public static void add(Node n) { example, if a property relies on the order of elements,
n.next = first.next; and the structure is approximated with a set).
n.prev = first; We kept these points in mind as we wrote the specifications
first.next.prev = n; for the programs we were trying to verify. In some cases,
first.next = n; for simple methods, it was easy to write more complete
} specifications, but in some other instances we opted to abstract
away some details and focus on specifying the most important
roperties.

Such pointer manipulation is tedious and easy to get WroHO
especially without spending some time to carefully sketch JAHOB SPECIFICATION CONSTRUCTS

out exactly what each operation is doing. However, if the The following explanations about the features and specifi-
programmer takes the time to reason about the properties thafion constructs in Jahob are taken from Section 3.2 of [2].
a doubly-linked list should satisfy (for example, the backbone Claimed fields: Claimed fields allow the fields of one
nodes should form a tree), then the main part of annotatiggss to be declared local to another class. Semantically, a field
the above method is specifying that the node being added Wa$ function from an object to an object, so a field claimed
not in the list before the method was called, and that it is Wy 3 classC is like the function is a private variable declared
the list after the method is finished. Then running Jahob ¢q ¢,
the above code will tell you if the implementation conforms NoteThat statementA NoteThat e statement is the
to its specifications. same as aAssert e followed by anAssume e. Itis sound
The idea is that reasoning about the properties of a progrg@cause Jahob checksbefore assuming it, and it can use
that should always hold is a more intuitive and more tractabfg a lemma when verifying subsequent formulas.
process than attempting to manually go through the code and Ghost specification variablesA ghost variable is inde-
consider all possible effects of each of the operations. pendent from any other variables and the only way its value
can be changed is by a specification assignment of the form
ghost_var := e in the body of a procedure, wheeds a valid

We now present the main work of the project - our attemp{$oL formula of the same type as the ghost variable.
at verifying increasingly more complicated data structures. We

begin with a simple linked list with a header node, then move LINKED LIST WITH HEADER NODE

to a cyclic singly and doubly linked lists and continue with In the following sections, we describe the specifications of
gueue with a header node and instantiable queue and ttiem classes we worked on verifying using sentences rather than
finish with a leaf-linked tree. In most of the implementationslOL formulas for readability. The formulas expressing the
all the class variables and methods are static because described properties can be found in the code submitted with
the purposes of verification we assume there is a singhds paper.

instance of the class. The idea is that it is most importantFirst we implemented a simple linked list class with a header
to provide the specification and verify the implementation farode, which has three methodsit() , add(Node n) and

Il. RESULTS

member(Node n) . This very simple implementation is only Local specification variablesThe ghost variableseen
around 20 lines of code, and requires about as many linesi®f set of objects which have been “touched” as we walk over
specification so that Jahob verifies it. the linked list checking each node against the parameter node.

The helper classNode only contains anext field. The One node gets added to it at every iteration of the while loop.
List class only has one public varialflest , which should After the while loop, aNoteThat statement expresses the
point to the header node of the list. Since procedure contratast that if we have walked through all the nodes and none
of public procedures cannot mention private variables, we lgft them are equal to the parameter node, thensthen set
first as public for convenience of writing the proceduréhould be equivalent to theontent set (i.e. we must have
contracts. checked all the nodes in the list before we are sure we can
say that the parameter node is not in the list).

Loop invariant:

- the current node we are examining must either be null or
content: A set of objects which includes all the nodes 3 member of the list

Global specification variables

reachable from the node after the header node vianthe - seen must contain all the nodes up to the current node,
field. and no nodes in the list after the current node

pointed: A function from object to boolean which returns - none of the nodes iseen must be equal to the parameter
true if the another node'sext field points to the object. node (otherwise we should already have returttad)

- the node being added is not the header node

Class invariants QUEUE WITH HEADER NODE

First unaliased: States that no other nodefsext field We implemented &ueue class, which is quite similar to
should point to the header node. theList class, but it has the methodsaqueue(Node n)

isTree: States that the list has the properties of a tree widhich inserts a node at the end of the list (instead of at the
the next field as the backbone. beginning, like theadd(Node n) method of theList class)

anddequeue() , which removes a node from the front of the
list. To facilitate this operation, the class has privast field

Procedure contracts and other annotations
of type Node.

init(): The specification variables are the same as that faciste
requires: the header node has not been instantiated ~class, with the following additions:
modifies: first Global specification variables

tent ﬁanLrjr:StS);the header node has been instantiated and CONjs Last: Returns true if a node is the last in the list (i.e. its

next field is null), and false otherwise.
add(Node n):
requires: Class invariants

- the header node has been instantiated empty List: Specifies that a queue is empty if both the
- the node being added is not the header node first and thelast nodes are null (if one of them is null,

- the node being added is not already a member of the I{3€N the other must be t0o).

- the reference to the node is not null Last is Iast:. Ensures that théast field really points to
- the next field of the node being added does not poiri{'€ 1ast node in the queue.
to anything Procedure contracts and other annotations

- no other node points to the node being addealr(ted

specification variable used) The procedure contract foenqueue(Node n) is the

same as thadd(Node n) of theList class.

modifies:content specification variable angbinted dequeue():
specification variable (because the node being added is now rgquires: does not require anything
being pointed to) modifies: first , content andpointed fields
ensures:the node being added is inserted into the list ensures:if there is no header node or the header node is
member(Node n): the only element in the queue, then the method returns null
requires: andcontent does not get modified. If there is at least one

element besides the header node in the queue, then the node
returned is a member of the queue and a node gets removed
from the queue.
modifies: nothing is modified This is an example of a partial specification, because we
ensures:the method returns true if the node passed in @0 not verify that the node removed is the last one in the
in the list, and false otherwise queue, only that a node does in fact get removed. If a

- the header node has been instantiated
- the node being added is not the header node

next next next next next . . -
first .
= - last: A function from object to boolean which returns

T nex noxti nexd noxti next true if the input object is not null and reachable from the
header node using nextl but iextl is equal to null. In

short, it returns true only if the input object is the last element
Fig. 1. Structure of a singly-linked cyclic list of the cyclic list.

Class invariants
particular application requires that specifically the last node nextLfield: States that any unallocated object should be
gets removed, then the specification would have to be mOdiﬁﬁglated.

to include this property. isTree: States that the backbone of the cyclic list defined

CYCLIC SINGLY-LINKED LIST by the nextl ghost specification variable has the properties

The next data structure that we implemented and verifiedqga tr_ee. . ,
a cyclic singly-linked list with a header node, which has three . First unaliased: States that no node'sextl should
methodsinit() ,add(Node n) andmember(Node n) . point to the, header nod_e. .
Similar to the linked list structure we described above, itis g . Next Field Constraint:States that the next field of any

simple implementation which requires about the same amm?rg’t!eCt in the (_:ypllc list should be equal to th_e r!extl of that
of specifications. Its structure is illustrated in Figure 1. object unless it is the last element of the cyclic list. The next

The helper clasNode only contains anext field. The field of the last element in the list should point to the header

List class only has one public varialflest , which should node.
point to the head_er node of the cyclic list. S_mce Procedulf?rocedure contracts and other annotations
contracts of public procedures cannot mention private vari-,

ables, we leffirst as public for convenience of writing the |n|t():_ . the head de h b _ iated
procedure contracts. requires: the header node has not been instantiate

modifies: first , content , isolated
Verification Status ensures:the header node has been instantiated and con-
All the methods in this class verify individually, but thetent is empty
initial state of the class does not meet the specifications. Inadd(Node n):

particular, the problem is with theextlfield invariant requires:

and with the field constraint. The class verifies in the initial - the header node has been instantiated

state if thenextlfield invariant is removed and the field - the node being added is not the header node

constraint is changed to: - the node being added is not already a member of the list
ALL X y. - the referencg to the no_de_ is not null

X : Objectalloc & Node.next x = y --> - the node being added is isolated

(last x --> y = first) & modifies: content specification variable and

(" last x --> y = x..nextl)) isolated specification variable (because the node being

added is now being pointed to and its nextl also points to
another node)

However, adding the x : Objectalloc ensures:the node being added is inserted into the list

condition makes the verification of théenit() and member(Node n):
member(Node n) methods fail. We did not have time to

requires:
investigate the reason for this so we mention it as one of the thq head de has b instantiated
easy possibilities for further work. - he header node has been Instantiate

- the node being added is not null
Global specification variables modifies: nothing is modified
nextl: A ghost specification variable from object to ensures:the method returns true if the node passed in is
object which defines the backbone of the cyclic list. Basicalliy the cyclic list, and false otherwise
nextl of an object in the cyclic list is equal to theext Local specification variablesThe ghost variablseen is
element following that object in the cyclic list. If the inputa set of objects which have been “touched” as we walk over
object is the last element of the cyclic list, thenrisxtl is the cyclic singly-linked list checking each node against the
set to null. parameter node. One node gets added to it at every iteration of
content: A set of objects which includes all the nodeshe while loop. After the while loop, &loteThat statement
reachable from the node after the header node viam#ix¢l expresses the fact that if we have walked through all the nodes
specification variable. and none of them are equal to the parameter node, then the
isolated: A function from object to boolean which returnsseen set should be equivalent to tlwntent set (i.e. we
true if the input object'nextl is null and it is not pointed must have checked all the nodes in the list before we are sure
by thenextl of any not null object. we can say that the parameter node is not in the list).

Loop invariant: Local specification variablesThe ghost variableeen is
the current node we are examining must either be tigeset of objects which have been “touched” as we walk over
header node or a member of the list the cyclic singly-linked list checking each node against the
seen must contain all the nodes up to the current nogR@arameter node. One node gets added to it at every iteration of
and no nodes in the list after the current node the while loop. After the while loop, &loteThat statement
if the current node is the header node trsmen must €XxpPresses the fact that if we have walked through all the nodes
contain all the nodes in the cyclic list and none of them are equal to the parameter nodp, then the
- none of the nodes iseen must be equal to the paramete®eN Sét should be equivalent to thwntent set (i.e. we

node (otherwise we should already have returmad) must have checked all the nodes in the list pefore we are sure
we can say that the parameter node is not in the list).

Loop invariant:

- the current node we are examining must either be the
Then we implemented and verified a very similar data header node or a member of the list

structure, cyclic doubly-linked list with a header node, - seen can be empty for the initial case otherwise it must

CYCLIC DOUBLY-LINKED LIST

which also has three methodsit() , add(Node n) and contain all the nodes up to the current node, and no nodes
member(Node n) . Similar to cyclic singly-linked list struc- in the list after the current node
ture we have verified, cyclic doubly-linked list has a simple - if the current node is the header node tlsmen must
implementation but it requires slightly more specifications. contain all the nodes in the cyclic list
The helper clasdode containsnext andprev fields. - none of the nodes iseen must be equal to the parameter
ThelList class only has one public varialfiest , which node (otherwise we should already have returttad)

should point to the header node of the cyclic doubly-linked list.
Since procedure contracts of public procedures cannot mention
private variables, we lefirst as public for convenience of The last data structure we have implemented is leaf-linked

LEAF-LINKED TREE

writing the procedure contracts. tree, whose backbone is a binary search tree and whose leaves
form a doubly-linked list (see Figure 2). Our motivation for
Global specification variables choosing this data structure is its broad functionality and better

e)) i complexity for some functions achieved by its special structure
Global specification variables of the cyclic doubly-linkedypich combines the tree structure with doubly-linked list. In

list are same as the ones we used for the cyclic singly-linkgd; jmplementation all the values inserted in the tree are held

list. as leaves so functions like search, insertion and deletion whose
)) complexity is linear for linked lists idog(N) in the average

Class invariants case for leaf-linked tree. In addition, it is much easier to
For cyclic doubly-linked list we used the following invari-traverse all the values using the doubly-linked list of leaves

ants together with the class invariants we have in cyclic singlgompared to a normal tree.

linked list. In our implementation we have six methods:

Prev Field Constraint: States that prev field of the lastiSEMPY0 isLeaf(Node n) getRoot() ,
element in the list should point to the header node and all tHedSmallestLeaf() , leafUpdate(Node n)

nodes pointed by the prev field of another node should pofd(int V) _ , _ _
to the same node by their next field. isEmpty() simply returns true if there is no value inserted

contentCheck:States that if an objects next field is equa'ln _the lea-linked tree, otherwise 't_ retur_ns false. :
isLeaf(Node n) returns true if the input Node is a leaf

to the objects nextl then the object pointed by next must beth leaf-linked t therwise it ret fal
an element of the content. in the leaf-linked tree, otherwise it returns false.

getRoot() returns the current root node.

Procedure contracts and other annotations findSmallestLeaf() returns the leaf node with the
smallest value in the leaf-linked tree.
The procedure contracts and annotationgnit) and add(int v) inserts the input value in the backbone
add(Node n) methods of cyclic doubly-linked list are samebinary search tree as a value of a leaf node.
as the ones we used for the cyclic singly-linked list. leafUpdate(Node n) is called insideadd(int v)
member(Node n): method and it updates the doubly-linked list of leaves after
requires: the insertion of a new value.

The helper clasflode containsright , left |, parent |,

- the header node has been instantiated !
next , prev , v fields.

- the node being added is not null
modifies: nothing is modified Verification Status

ensures:the method returns true if the list is not empty All the methods in this class verify individually, but the
and the node passed in is in the cyclic list, and false otherwisidtial state of the class does not meet the specifications. In

input : Node n
output: Neighbor of n in the tree
1 p < parent of n;
2 ancestors < all nodes reachable from n via parent
fields;
3 descendants < all nodes in subtree rooted at n;
4 result < null;
5 if p is null then
6 ‘ result < null;
7
8
9

Fig. 2. Structure of a leaf-linked tree else
if n is left child of pthen
10 p.r « right child of p;
particular, the problem is with theeftNotRight invariant | 11 result «— SmallestNode(p.r) ;
and with the parent field constraint. If those are slightly 12 else
changed as the following by adding the condition of the objects:s splitNodes «+ all ancestors whose right
being members of nodes and the root case in the parent field children are not ancestors ;
constraint, then the initial state of the class verifies but thes firstSplitNode < node insplitNodes
leaf related functions do not verify probably because of the which does not contain any other members ¢f
temporary violation of the invariants. splitnodes in its descendants ;
invariant LeftNotRight: 15 s.r « right child of firstSplz't'Node;
" i 16 result «— SmallestNode(s.r) ;
ALL X. x : nodes -->
x..Node.left "= x..Node.right";) Y end
18 end

19 return result;
Algorithm 1: Algorithm to find the neighboring leaf

invariant ParentFieldConstraint:
"ALL x y. x:nodes & Node.parent x =y -->

(x = root > y = null) & of a leaf
(x "= root -->
x ™= null -->

Left nodes(Node n):the set of nodes reachable fromvia
theleft field, includingn. Needed fomextLeaf function.
Ancestors (Node n):the set of nodes reachable from
via the parent field, including n. Needed fornextLeaf
Time did not allow us to attempt to verify order propertiefunction.
of the tree, although there are some examples of such specbescendants (Node n)the set of nodes reachable fram

((y..Node.left = x |
y..Node.right = x) &
(v : internalNodes)))))";

fications which are fairly long and complex. via theleft orright fields, not includingn (equivalent to
the nodes contained in a subtree rootedh ahinus n itself.
Verifying next node Needed fomextLeaf function.

We created a specification which states that for a leaf Split nodes(Node n): contains all the podes Wh.'Ch. are
members ofancestors of n but whoseright child is

in the linked list, the node that itsext field is pointing to : ber of . e Nooded | ahie
is the leaf that is next to it in the tree structure (hencefor#l]‘u0 ‘? member oancestors of n. Needed fomexiLea
referred to as thaeighborof L). For this purpose, we first unction.

implemented an algorithm which finds the neighbor of a Ieag. ls.t[:\:gdggde(':?gean%): tﬁssgjc;iie\r,]v;ﬂs IS aareT]gtmrgzn?f
Then we created a specification variable which is a functi%rﬁ) ! w

that checks whether a nodeigxt field is set correctly when ers ofspllt.Nodes Of, n. Needed fqrngxtLeaf fl.mctlo'n.
) . ; is left child (Node n): returns true ifn is a left child of its

that node is added to the tree. The algorithm we used in our . :
rent, and false otherwise. Needed fiextLeaf function.

specification is presented in Algorithm 1. is smallest (Node n, Node aRoot)returns true ifn is

the left-most leaf of the subtree rooted aRoot , and false

otherwise. Needed fanextLeaf function.
Nodes: a set of objects which contains all the nodes in the js smallest from root (Node n):returns true ifn is the

Global specification variables

tree reachable from the root node via tleét or right left-most leaf of the whole tree rooted atot , and false
fields. otherwise. This was added to so that it may be checked that
Content: the integer values of the nodes in tNedes set. the public methodindSmallestLeaf() method returns

Internal nodes: all those nodes for which at least one othe correct result without includingpot (which is a private
the left or right nodes is not null variable) in the procedure contract.

next Leaf (Node n, Node nnext):this function returns correctly. Therefore, as we were writing the specifications for
true if nnext is the neighbor oh, and false otherwise. This those implementations, we were mostly sure they were correct,
function basically implements Algorithm 1. and a problem with the verification usually resulted from a
problem with the specification rather than with the implemen-
tation. However, when we were writing the specifications for
Tree invariant: the structure formed by the nodes connectafle |eaf-linked tree (especially the neighbor node algorithm),
by theleft andright fields satisfies the tree properties. we actually found some bugs in the implementation which
Left not right: theleft ~andright fields of a node must e had to fix before the the methods would verify. In this
not point to the same node. ~ case we really saw the utility of using a verification system
Root not pointed: if root is not null then no node exists jke Jahob to verify data structures. It was interesting trying
whoseleft , right , next orprev fields pointto root. {5 get both the specification and the implementation correct,
Root parentless:if root is not null then its parent field pecayse thinking about them at the same time helped us realize
should be null. _ . mistakes in both. This experience made us realize that although
Field constraint on all Node fields:all Node fields must ; is 5 time-consuming and frustrating activity, annotating a

point to nodes in this tree (i.e. nodes that are members of {§&,gram with specifications and checking whether it verifies

Nod_es set).) o is actually useful and helpful, even to ordinary programmers
Field constraint on parent field:if a nodex has a parent, |ixe ourselves.

then there exists a nodewhoseleft orright field points
to X.

Class invariants

We enjoyed using Jahob because we were already familiar
with HOL, so we did not have too many problems with the
Procedure contracts and other annotations syntax of the specifications. Another positive aspect of Jahob

For brevity, we do not include here the small methodfg Its mo?ulafr ap(ljaro_a(zjh to dgta Ztructu(;e \:ﬁrlfltcatlion}verlfyl_ng
isEmpty() , isLeaf() andgetRoot() because they are ragments of code independenty made the task of verifying

simple to verify and their specifications are easy to understar?(@.oem're c_iata it.rgcture muc(:jh eatsrl]er. ¢ Jahob for dat
findSmallestLeaf(): ur main criticism regarding the use of Jahob for data

ensures: the return value is either null or a thestructure verification is the fact that the automation starts
left-most leaf node of the tree (the specification variab break down even when trying to prove some properties

isSmallestFromRoot(res) is used here) that at first glance seem simple. Some programs require more
Loop invariant: While traversing the binary tree to findspecifications that actual code, and although we mentioned that

the smallest leaf node, we use a temporary node. Since YR saw the utility in doing this, _therg_is a limit to how much
loop continues as long as the temporary node is not a Ieaf,f e and effort a programmer is willing to spend to ensure

loop invariant ensures that the temporary node is an interdi3f complete correctness of hls_/her implementation. Ho_weverz
node and that it is reachable via theft fields starting at we note that for most of the project we were Jahob beginners;
root in each iteration more experienced programmers and Jahob users could find a

leafUpdate(Node n): tool I?ke Ja_hob even more helpfy! _than we did.
requires: n is a leaf node that has a parent node . This project has many pOSS|b|I_|t|¢s for' further work, as we
ensures:the next field of n is n’s neighbor in the tree. just scratched the surface of verifying simple data structures.
add(int v): Since our work was incomplete, one could continue this

requires: v is not a value in the content set (This can beroject by fully verifying the cyclic list classes and the leaf-
modified if the programmer decides that a value is allowed tgked tree (all methodandthe initial state). A following step

occur in the list more than once) could be working on verifying instantiable classes. We briefly
modifies: content , nodes , internalNodes considered this with the queue class, but had some problems
ensures:v was added t@ontent and decided we would learn more if we concentrated on ver-

Loop invariant: While traversing the binary tree to findifying classes which have a single instance. Furthermore, we
the correct place to insert the new node, we use a tempork#lize that Jahob could be used for verifying more advanced
node. The loop invariant checks if the temporary node isPiograms, and for specifying more precise properties. It would

member ofnodes in each iteration. be interesting to see the kind of implementations for which
using Jahob woulchot be appropriate (because of time or
I1l. CONCLUSION complexity of specifications, for example), so that its utility

The final status of our project is as follows: we have fullgould be determined more concretely.
verified the implementations of a singly-linked list with a In conclusion, we have had a positive experience with
header node and a queue, and all methods of a singly-linkbés project, because we were forced to critically examine
cyclic list, doubly-linked cyclic list and leaf-linked tree alsoevery aspect of our implementation as we were writing the
verify, but these classes require further work to ensure thpecifications. This kind of attention to detail will be useful
specifications are correct in the initial state of the class. in any programming work we do in the future, even if we are

When we began working on this project, we implementeabt formally verifying the program using a verification tool
very simple data structures which were easy to implemesuich as Jahob.

(1]

[2]
(3]

(4]
(3]

REFERENCES

Max Planck Institut Informatik. Spass: An automated theorem prover for
first-order logic with equalityhttp://spass.mpi-sb.mpg.de/

Viktor Kuncak. Modular Data Structure VerificatianPhD thesis, 2007.
Anders Møller and Michael I. Schwartzbach. The pointer assertion
logic engine. InPLDI '01: Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implemenigiamges
221-231, New York, NY, USA, 2001. ACM Press.

Lawrence C. Paulson and Tobias Nipkow. Isabelle theorem proving
environment.http://isabelle.in.tum.de/

Stephan Sculz. The e equational theorem prolveep:// www4.informatik.
tu-muenchen.defschulz/ WORK/eprover.html

[6] T. Wies, V. Kuncak, P. Lam, A. Podelski, and M. Rinard. On field

constraint analysis. IrProc. Int. Conf. Verification, Model Checking,
and Abstract Interpretation, 20062006.

