
1

Software Verification and Analysis
Randomized Model Finder

Eyer Leander, C’edric Jeanneret

Abstract— This document introduces a new method
using randomness to find model for first order logic
formulas. This new method has been tested on a simple
example and results, even far from well-known model
finder tool, are encouraging. This paper also present a
solver for TPTP problems based on KodKod.

I. MOTIVATION

First order logic is present in many fields, like
software verification, mathematics, philosophy, etc.
Various applications requires to find an interpreta-
tion (the binding of the free variables to domain
elements and the evaluations of functions or predi-
cates) that satisfies a given first order logic formula.
Among them, one may find1:

• Showing the consistency of formal specifica-
tions

• Solving certain mathematical problems
• Finding counterexamples to false conjectures,

thus avoiding infinite running of automatic
theorem provers

• Providing semantic information to a resolution-
based theorem prover, to guide its search for a
proof

As they will be presented in next section, none
of the existing tools for finding model is genuinely
using randomness. However, in some SAT solvers,
randomness is successfully used to improve the
efficiency in finding assignment satisfying a set of
propositional clauses. Why would randomness not
be used to find model for first order logic ?

II. RELATED WORK

There are several ways to find a model for a
first-order logic formula. One could for example
search exhaustively for a model. Due to exponential
explosion, such a method are limited to simple
formulas or to small domains.

1http://lcs.ios.ac.cn/˜zj/model.html

SEM-style tools performs backtracking searches.
The search space is reduced using advanced
techniques such like constraints propagation,
symmetry detection, etc.

On the other hand, there is a complete family
of tools based on the fact that model finding can
be reduced to solving a problem in a simpler
logic. For instance, MACE tool expresses the
interpretation of a FOL formulas with some
propositional clauses. These clauses would later
be solved by a SAT-Solver, and it suffices to
map the assignment back to an interpretation. If
the reduction is sound, this interpretation is a model.

Paradox [1] is a improvement of MACE,
introducing several techniques to reduce the size of
the generated SAT problem.

In the same category, KodKod [2] accepts con-
straints from a language that combines first-order
logic with relational algebra and transitive closure.
Further more, it allows to specify partial solutions.
KodKod also introduces an effective symmetry de-
tection and provide an economical translation from
relational logic to boolean logic.

III. MAIN IDEA

From previous section, it turns out that model
finding is somehow a trade off between space
(when translated to propositional clauses) and
time (when search in initial logic is performed).
Another observation one could do is that none of
the existing tools exploit randomness to improve its
efficiency (even if randomness can be used within
the SAT-solver itself).

Randomness seems undesirable in the world
of logics and proofs. However, in case where
the model finder is used to find a solution to a

http://lcs.ios.ac.cn/~zj/model.html

2

problem (and not to show the non-existence of
this solution), one may be interested in having a
possibly approximate answer quickly. Based on
these observations, we designed a new method to
find model for first order logic.

Since the list of predicates and functions used
in a set of FOL formulas is known, we propose to
encode an interpretation as a list of values. This list
would then be implicitly attached to a binary search
tree. Consider a function f over a domain of size
2. Its interpretation can either be written explicitly
(as in the table II) or implicitely (as the list of red
elements of the figure 1).

A A A
A A B
A B A
A B B
B A A
B A B
B B A
B B B

TABLE I

INTERPRETATION OF A FUNCTION

Fig. 1. Example of our interpretation’s representation

Each elements in the list is either a domain
element (for functions) or a boolean (for predicates).
In any case, it can be encoded as a floating point
number: let 0 ≤ u < 1. If the element is a boolean,
its value is true if u > 0.5. On the other hand, if
a domain element is expected, its value will be Ei,
with i = bu · domain’s sizec.

The interest of having a floating point represen-
tation is that it allow us to introduce the notion
of speed at which the interpretation evolves. In
other words, between two iterations, we have the
following mathematical relation:

→
xk+1=

→
xk +t· →v

with
→
xi being the float encoding of the interpretation

at the iteration i,
→
v the speed, and a scalar t

measuring the time elapsed during the iteration.
Please not that components are normalized to the
interval [0, 1[at every iteration.

A search algorithm defines the initial
interpretation

→
x0, the duration ti and the speed

→
v

of an iteration.

Since the domain is torroı̈dal, it is possible to
perform exhaustive search with a constant time and
speed. Details are omitted for sake of brevity, but
the idea is to give the last component a speed such
that its value changes at every iteration whereas
the first components moves slowly (in a similar
way than digits from an odometer in a car). Purely
random search can also be modeled using this
representation. It suffices to pick a new random
speed at every iteration.

Actually, interpretation are either a model, or not.
If we could give an estimation of how far from a
model the interpretation is, model finding would
be reduced to finding a minimum over a multi-
dimensional bounded domain. Techniques exists to
solve such problem, like gradient descent or particle
swarm optimization. We propose to use the number
of non satisfied axioms or conjectures as metric to
estimate the distance to a model.

IV. IMPLEMENTATION

In the previous section we presented some new
ideas in model finding techniques. This section
will present the work we achieved towards these
directions.

A. TPTP
We decided to use TPTP [3] as front-end

language for our experiments. Firstly because it
is accepted as a standard in automated reasoning
community and secondly because an impressive
library of problems is provided for testing and
comparison purpose. In TPTP, problems are
composed by a set of formulas or clauses. These
are annotated with a name and a kind (hypothesis,
axiom, theorem, conjecture, etc). Basically, a
problem is solved if conjectures are proved using
axioms. Using a model finder, this is done by

3

finding a model satisfying both the axioms and the
negation of the conjecture.

Here is the abstract syntax used within our
project2:

F := A | F ∧ F | F ∨ F | !F

| ∀x. F | ∃x. F

| F ⇐ F | F ⇒ F | F ⇔ F

A := predName T ∗

T := symbolName T ∗

Roughly, formulas are composed by atoms
using traditional first order logic connectors like
conjunction, negation, implications, etc. Quantified
formulas are also supported. Atoms are predicates,
identified by a name and applied to a set of
terms. Furthermore terms are functions, themselves
identified by a name and applied to a set (possibly
empty, in the case the function is called a constant)
of terms.

To parse input files, we used an existing Java
parser for TPTP 3 written by Andrey Chaltsev.
The abstract syntax tree produced by this parser
is then translated to an equivalent one in Scala.
This translation is required because further tree
manipulations will be implemented by using the
Scala pattern matching mechanism.

B. KodKod

In order to get used with model finding problem-
atics, we started to write a model finder based on
KodKod, a relational model finder (see section II for
more details). The tool is provided as a Java API,
therefore, from a technical point of view, it is easy to
interface it with our TPTP parser. Although KodKod
supports all first order logics connectors, functions
and predicates have to be expressed with relational
operators. The following walk through explains how
to translate a TPTP formula into a KodKod one.

1) Create a universe with n elements, n being
the size of the searched model

2) Navigate trough the abstract syntax tree. For
every

2please note that this is not the TPTP concrete syntax
3http://www.freewebs.com/andrei_ch/

• predicate of arity k:
a) create a relation of arity k
b) set its lower bound to empty set
c) set its upper bound to all possible k-

tuples made of domain elements
d) store this relation in a symbol table

• function of arity 0 (a constant):
a) create a relation of arity 1
b) set its lower bound to empty set
c) set its upper bound to the universe
d) store this relation in a symbol table
e) store an additional formula constrain-

ing the relation size to 1.
• function of arity k:

a) create a relation of arity k + 1
b) set its lower bound to empty set
c) set its upper bound to all possible k +

1-tuples made of domain elements
d) store this relation in a symbol table

3) Recursively build the KodKod abstract syntax
tree:
• the conversion of logical connectors (con-

junction, negation, etc) is straightforward
• quantified formulas need special care:

a) create a new variable
b) store the variable on top of the symbol

table
c) create a declaration claiming the

freshly created variable is member of
the universe

d) convert the inner formula
e) create the KodKod quantified formula

using the converted inner formula and
the declaration

f) remove the variable from the symbol
table

• equalities between two expressions are
dealt by the eq construct

• atoms (predicate applications) are trans-
formed as testing whether the product of
the arguments are member of the predi-
cate relation

• variable terms are replace by variables
found in the symbol table

• constants are replaced by their relation
• terms (function applications) are slightly

more difficult to deal with: the function
is currified and arguments are joined from
the left to the relation of the function. For

http://www.freewebs.com/andrei_ch/

4

instance, f(a, b) becomes b.(a.f), . being
the joint operator.

4) build a formula as conjunction of declarations,
axioms and the negation of the conjecture.
This is the formula that has to be solved by
KodKod.

C. RMF - Randomized Model Finder
1) Main Classes and Abstractions:
• Iterable Interface: the iterable inter-

face lies at the heart of our implementation.
It defines the following methods:

– hasNext() - allows to see if this iterator
has more elements available

– next() - sets the iterator to the next
element

– reset() - reinitializes the iterator to it’s
first element

– rand() - forces the iterator to enter a
random state

• VariableIterator: the basic implementa-
tion of Iterable for a variable. It iterates over
the range from 1 to the domain size given to
it.

• StackIterator: used to connect two it-
erators (called self and sub) to work like a
distance counter in a car. next() requests
are forwarded to sub until sub reaches the end
of it’s domain, then self is increased and sub
reset. The stack iterator is used to enumerate all
possible interpretations in exhaustive search.

• InterpretationElementRepr,
FunctionRepr and PredicateRepr:
this class encodes an interpretation for a
function or a predicate (the main difference is
that the resultat of functions iterate over the
whole domain while the resultat of predicates
iterate only over two elements (true and
false). current The interpretation is represented
by a stack iterator. The Function/Predicate
representations themselves implement the
Iterable interface as well and delegate
requests to their interpretation objects.
All function and predicate representations are
connected in a stacked iterator which allows us
to easily enumerate all possible combinations
of function interpretations in the system.

• Evaluator: the evaluator evaluates a formula
against an interpretation and decides if the

formula holds. This indicates that we have
found a valid model.

2) Abstraction of the Interpretation: For each
function and predicate symbol, the interpretation has
to list the result of each combination of input values.
We encode the interpretation as a list of numbers,
such that the parameter values indicate the position
in this list to load the result. The size of this list is
domain sizearity. As an example, let’s consider a
predicate p(a, b) of arity 2 in a domain of 3 and an
interpretation for the equality function:

A B Res
1 1 1
1 2 2
1 3 2
2 1 2
2 2 1
2 3 2
3 1 2
3 2 2
3 3 1

The interpretation would thus be stored as the list
(1, 2, 2, 2, 1, 2, 2, 2, 1).

3) Searching interpretation: Each of the num-
bers in our interpretation is stored as a variable
iterator which are connected in a stack iterator. For
exhaustive search, we simply enumerate all possible
combinations of values in the list. For randomized
search, we will randomize all positions at each
iteration. Our experiments have shown that this
technique is very inefficient and requires on aver-
age about as many iterations as there are possible
iterations.

4) Need for speed: To reduce the number of
iterations, we introduce the concept of speed. Each
position in the interpretation list has a speed asso-
ciated with it. The speed encodes the probabliy of
that position changing in the next iteration. The idea
is that ’correct’ assignments in our interpretation
remain stable while ’incorrect’ ones change fre-
quently until they reach a correct value. Changes in
the speed are communicated back by the evaluator.
The forall statement will test it’s predicate against
every element in the domain, and if it finds that
an element is correct it propagates a decrease in
speed for the assignment of values and their result.
If the predicate is wrong an increase in speed is
propagated.

5

For the equality predicate of the above example,
consider the following interpretation:

1 1 2 2 2 2 2 2 1

The evaluator will check the value for (1,1) and find
the value 1 which is correct, the speed for position
one is thus decreased. The interpretation for (1,2)
however is 1 which is wrong, the speed of change
for the second position will thus be increased.

V. RESULTS

We analyzed three procedures for model finding:

• exhaustive search
• randomized search
• randomized search with speed

For testing we used a formula described the equality
relation:

![H1, H2] : (q(H1, H2) ⇔ H1 = H2)

The formula has one correct model for any do-
main size.

Iterations Domain 3 Domain 4
Exhaustive 238 31710
Randomized 493 60000
Speed 17 57

TABLE II

PERFORMANCE OF VARIOUS SEARCHES

The exhaustive search finds the model after an-
alyzing about 50% of the possible interpretations
since the model is located in the middle of our linear
search space. Randomized search takes on average
about twice as long which can be explained by
the fact that interpretations might be visited several
times (memory restrictions prevent us from storing
which interpretations were analyzed already). The
introduction of the speed heuristic allowed us to cut
down the required number of iterations consideraby.
Also, while the number of analyzed interpretations
grows linearly with the space of interpretations for
exhaustive and randomized search, ’speed’ based
search is able to find the model in logarithmic
space.

VI. LIMITATIONS

During our project, we had to face to some
technical limitations. We started to write the search
algorithms in a functional style, but high order
functions (like map or reduce) were not usable
because of stack overflows (due to the length
of the interpretation lists, even for small domain
or simple formulas). Even moving to imperative
object-oriented code does not prevent us from heap
overflow. According to this, Scala may not be the
most appropriate language.

Our TPTP front end for KodKod is not able
to take advantage of the available relational logic
(like closure, etc). Handwritten translation of some
TPTP problem (provided as examples in KodKod
package) are by far more simple than the one
automatically generated (because using relational
constructs). So far, we were not able to extract
partial instance from a TPTP problem. These facts
may make KodKod solve our automated translation
in a less efficient way than the translations provided
and used as benchmarks in the KodKod publication.

Currently, our implemented metric only works
with the universal quantifiers since violated predi-
cates clearly indicate which elements of the interpre-
tation needs to change. Existential quantifiers do not
allow us that since it is not clear which combination
of input values should change to fulfill the predicate
at least once.

VII. FUTURE DIRECTION

Limitations presented in previous section let us
propose some ideas for further work. First of all,
the representation should be cut so that it contains
only the information needed for an evaluation. In
our project, interpretations contain the values for
every functions or predicates, for every possible
combination of arguments. Making the list shorter
would reduce the time required for computation and
the memory footprint. The search space could also
be reduced by applying techniques presented in
related works, like symmetric detection, constraints
propagation, etc.

Due to the lack of time, we did not test different
metrics, neither different optimization techniques
like particle swarm optimization or gradient descent.

6

It would be valuable to measure the efficiency of
reducing model finding to an optimization problem
in a scientific way, by using, for example, the TPTP
library.

VIII. CONCLUSION

During this project, we were confronted to the
difficulties of finding model. Our intuition was that
it was possible to move randomized SAT solver
techniques upwards to first order logics. In some
extent, we were successful in this migration. But
the available time did not allow us to explore several
path that remain open for further work.

ACKNOWLEDGEMENT

We would like to thank Doctor V. Kuncak for all
what we learned during this semester and all the
documentations he provided to us for this project

REFERENCES

[1] K. Claessen and N. Sörensson, “New techniques that improve
MACE-style model finding,” in Proc. of Workshop on Model
Computation (MODEL), 2003.

[2] E. Torlak and D. Jackson, “Kodkod: A relational model finder,”
in Tools and Algorithms for Construction and Analysis of Systems
(TACAS ’07), 2007.

[3] G. Sutcliffe and C. Suttner, “The TPTP Problem Library: CNF
Release v1.2.1,” Journal of Automated Reasoning, vol. 21, no. 2,
pp. 177–203, 1998.

	Motivation
	Related work
	Main idea
	Implementation
	TPTP
	KodKod
	RMF - Randomized Model Finder
	Main Classes and Abstractions
	Abstraction of the Interpretation
	Searching interpretation
	Need for speed

	Results
	Limitations
	Future Direction
	Conclusion
	References

