
Model Checking Contracts
– A Case Study�

Gordon Pace1, Cristian Prisacariu2, and Gerardo Schneider2

1 Dept. of Computer Science and AI, University of Malta, Msida, Malta
2 Department of Informatics – University of Oslo,

P.O. Box 1080 Blindern, N-0316 Oslo, Norway
gordon.pace@um.edu.mt, {cristi,gerardo}@ifi.uio.no

Abstract. Contracts are agreements between distinct parties that de-
termine rights and obligations on their signatories, and have been intro-
duced in order to reduce risks and to regulate inter-business relationships.
In this paper we show how a conventional contract can be written in the
contract language CL, model the contract and verify properties of the
model using the NuSMV model checking tool.

1 Introduction

Internet-based applications involving one or more entities participating in
inter-business collaborations, virtual organisations, and web services, usually
communicate through service exchanges. Such exchanges are subject to certain
understanding on the different roles the participants play, including assumptions
on their correct and incorrect behaviours, and their rights and obligations in or-
der to avoid misunderstanding and ambiguities in such business relationships.
This motivates the need of establishing an agreement before any transaction is
performed, through a contract, guaranteeing the rights and duties of each signa-
tory. Such documents may also contain clauses determining penalties in case of
contract violations, and be as unambiguous as possible to avoid conflicting inter-
pretations. Conventional contracts are documents written in natural language, as
one may find in usual judicial or commercial traditional activities. On the other
hand, electronic contracts (or e-contracts for short) are machine-oriented and
as such they must be “understood” by the software responsible for controlling
and monitoring the service exchanges. E-contracts might be seen in two different
ways: (1) As the executable version of a conventional contract, obtained from
the translation of the “paper” version into the electronic one; (2) As contracts
by themselves obtained directly from certain software applications, like web ser-
vices and virtual organisations. For our current purposes, the difference above is
irrelevant, though our case study is based on a conventional contract.

Ideally, e-contracts should be shown to be contradiction-free both internally,
and with respect to the governing policies under which the contract is enacted.
� Partially supported by the Nordunet3 project “Contract-Oriented Software Devel-

opment for Internet Services”.

K.S. Namjoshi et al. (Eds.): ATVA 2007, LNCS 4762, pp. 82–97, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Model Checking Contracts – A Case Study 83

Moreover, there must be a run-time system ensuring that the contract is re-
spected. In other words, contracts should be amenable to formal analysis allow-
ing both static and dynamic verification, and thus written in a formal language.
In this paper we are interested only in the analysis of the contract itself (stat-
ically), and we are not concerned with its relation with policies nor with its
enforcement at run-time.

A formal language for writing contracts should be designed as to avoid most of
the philosophical problems of deontic logic [11]. Moreover, it should be possible
to represent conditional obligations, permissions and prohibitions, as well as
contrary-to-duty obligations (CTD) and contrary-to-prohibitions (CTP). CTDs
are statements representing obligations that might not be respected, whereas
CTPs are similar statements dealing with prohibitions that might be violated.
Both constructions specify the obligation/prohibition to be fulfilled and which
is the reparation/penalty to be applied in case of violation.

A formal language for writing (untimed) contracts is CL [13]. The language
is tailored to e-contracts, following an action-based approach, and having the
following properties: (1) The language avoids most of the classical paradoxes of
deontic logic; (2) It is possible to express in the language (conditional) obliga-
tions, permissions and prohibitions over concurrent actions keeping their intu-
itive meaning; (3) It is possible to express CTDs and CTPs; (4) The language
has a formal semantics given in a variant of the modal μ-calculus.

The main contribution of this paper is to show how model checking techniques
can be applied in the context of contract-oriented software development, in order
to determine whether a given contract stipulates what it is supposed to. CL
is used as an intermediary between the contract clauses in plain English and
the system specification required by the model checking tool. This use of CL
increases the confidence in the initial formulation of the contract clauses. The
model checking method that we present requires to pursue the following steps:

1. Model the conventional contract written in English into the formal language
CL;

2. Translate syntactically the CL specification into the extended μ-calculus Cμ;
3. Obtain a Kripke-like model (a labelled transition system with state propo-

sitions — LTS) of the Cμ formulae;
4. Translate the LTS into the input language of NuSMV;
5. Perform model checking using NuSMV;
6. In case of a counter-example given by NuSMV, interpret it as a CL clause

and repeat the model checking process until the property is satisfied;
7. Finally, repair the original contract by adding a corresponding clause, if

applicable.

The paper is organised as follows. In Section 2 we start by presenting the
language CL, including an example of the kind of contracts we are dealing with,
from which we will extract our case study. Section 3 is the main part of the paper
where we first formalise the case study in CL, and afterwards we show how to
use model checking and the NuSMV tool to determine whether the contract is

84 G. Pace, C. Prisacariu, and G. Schneider

correct with respect to certain desired properties, and how to get feedback as to
write the “correct” contract. In Section 4 we analyse related works and conclude
by discussing our choice of the model checking tool as well as future work.

2 A Formal Language for Contracts

We present in Fig. 1 a part of a conventional contract between a service provider
and a client, where the provider gives access to Internet to the client. We analyse
part of this contract in the following section. First we recall the contract language
CL; for a more detailed presentation see [13].

Definition 1 (Contract Language Syntax). A contract is defined by:

Contract := D ; C
C := φ | CO | CP | CF | C ∧ C | [α]C | 〈α〉C | C U C | © C | �C

CO := O(α) | CO ⊕ CO

CP := P (α) | CP ⊕ CP

CF := F (δ) | CF ∨ [δ]CF

The syntax of CL closely resembles the syntax of a modal (deontic) logic. Though
this similarity is clearly intentional since we are driven by a logic-based approach,
CL is not a logic. The semantics of CL are given in an extension of μ-calculus
[8] which we call Cμ. In what follows we provide an intuitive explanation of the
CL syntax.

A contract consists of two parts: definitions (D) and clauses (C). We deliber-
ately let the definitions part underspecified in the syntax above. D specifies the
assertions (or conditions) and the atomic actions present in the clauses. φ de-
notes assertions and ranges over boolean expressions including the usual boolean
connectives, and arithmetic comparisons like “the budget is more than 200$”. We
let the atomic actions underspecified, which for our purposes can be understood
as consisting of three parts: the proper action, the subject performing the action,
and the target of (or, the object receiving) such an action. Note that, in this way,
the parties involved in a contract are encoded in the actions.

C is the general contract clause. CO, CP , and CF denote respectively obliga-
tion, permission, and prohibition clauses. O(·), P (·), and F (·), represents the
obligation, permission or prohibition of performing a given action. ∧ and ⊕ may
be thought as the classical conjunction and exclusive disjunction, which may be
used to combine obligations and permissions. For prohibition CF we have ∨, again
with the classical meaning of the corresponding operator. α is a compound ac-
tion (i.e., an expression containing one or more of the following operators: choice
“+”; sequence “ ·”; concurrency “&”, and test “?” —see [13]), while δ denotes a
compound action not containing any occurrence of +. Note that syntactically
⊕ cannot appear between prohibitions and + cannot occur under the scope
of F .

Model Checking Contracts – A Case Study 85

This deed of Agreement is made between:
1. [name], from now on referred to as Provider and
2. [name], from now on referred to as the Client.
INTRODUCTION
3. The Provider is obliged to provide the Internet Services as stipulated in this Agreement.
5. DEFINITIONS

5.1. j) Internet traffic may be measured by both Client and Provider by means of Equip-
ment and may take the two values high and normal.

OPERATIVE PART
7. CLIENT’S RESPONSIBILITIES AND DUTIES

7.1. The Client shall not:
a) supply false information to the Client Relations Department of the Provider.

7.2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or
the Client must notify the Provider by sending an e-mail specifying that he will pay later.

7.3. If the Client delays the payment as stipulated in 7.2, after notification he must immedi-
ately lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).

7.4. If the Client does not lower the Internet traffic immediately, then the Client will have
to pay 3 ∗ [price].

7.5. The Client shall, as soon as the Internet Service becomes operative, submit within seven
(7) days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

8. CLIENT’S RIGHTS
8.1. The Client may choose to pay either:

a) each month; b) each three (3) months; c) each six (6) months;
9. PROVIDER’S SERVICE

9.2. As part of the Service offered by the Provider the Client has the right to an e-mail and
an user account.

9.3. Provider is obliged to offer with no limitation and within a period of seven (7) days
a password and any other Equipment Specific to Client, necessary for the correct usage of
the user account, upon receiving of all the necessary data about the client from the Client
Relations Department of the Provider.

9.4. Each month the Client pays the bill the Provider is obliged to send a Report of Internet
Usage to the Client.

10. PROVIDER’S DUTIES
10.1. The Provider takes the obligation to return the personal data of the client to the original

status upon termination of the present Agreement, and afterwards to delete and not use
for any purpose any whole or part of it.

10.2. The Provider guarantees that the Client Relations Department, as part of his adminis-
trative organisation, will be responsive to requests from the Client or any other Department
of the Provider, or the Provider itself within a period less than two (2) hours during
working hours or the day after.

11. PROVIDER’S RIGHTS
11.1. The Provider takes the right to alter, delete, or use the personal data of the Client

only for statistics, monitoring and internal usage in the confidence of the Provider.
11.2. Provider may, at its sole discretion, without notice or giving any reason or incurring

any liability for doing so:
b) Suspend Internet Services immediately if Client is in breach of Clause 7.1;

13. TERMINATION
13.1. Without limiting the generality of any other Clause in this Agreement the Client may

terminate this Agreement immediately without any notice and being vindicated of any of the
Clause of the present Agreement if:
a) the Provider does not provide the Internet Service for seven (7) days consecutively.

13.2. The Provider is forbidden to terminate the present Agreement without previous written
notification by normal post and by e-mail.

13.3. The Provider may terminate the present Agreement if:
a) any payment due from Client to Provider pursuant to this Agreement remains unpaid

for a period of fourteen (14) days;
16. GOVERNING LAW

16.1. The Provider and the present Agreement are governed by and construed according to
the Law Regulating Internet Services and to the Law of the State.
a) The Law of the State stipulates that any ISP Provider is obliged, upon request to seize

any activity until further notice from the State representatives.

Fig. 1. Part of a contract between an Internet provider and a client

86 G. Pace, C. Prisacariu, and G. Schneider

We borrow from propositional dynamic logic [6] the syntax [α]φ to represent
that after performing α (if it is possible to do so), φ must hold. The [·] notation
allows having a test, where [φ?]C must be understood as φ ⇒ C. 〈α〉φ captures
the idea that it exists the possibility of executing α, in which case φ must hold
afterwards. Following temporal logic (TL) notation we have U (until), © (next),
and � (always), with intuitive semantics as in TL [12]. Thus C1 U C2 states that
C1 holds until C2 holds. ©C intuitively states that C holds in the next moment,
usually after something happens, and �C expressing that C holds in every mo-
ment. We can define ♦C (eventually) for expressing that C holds sometimes in a
future moment.

To express CTDs we provide the following notation, Oϕ(α), which is syntactic
sugar for O(α)∧ [α]ϕ stating the obligation to execute α, and the reparation ϕ in
case the obligation is violated, i.e. whenever α is not performed. The reparation
may be any contract clause. Similarly, CTP statements Fϕ(α) can be defined as
Fϕ(α) = F (α) ∧ [α]ϕ, where ϕ is the penalty in case the prohibition is violated.
Notice that it is possible to express nested CTDs and CTPs.

In CL we can write conditional obligations, permissions and prohibitions in
two different ways. Just as an example let us consider conditional obligations.
The first kind is represented as [α]O(β), which may be read as “after performing
α, one is obliged to do β”. The second kind is modelled using the test operator ?:
[ϕ?]O(α), representing “If ϕ holds then one is obliged to perform α”. Similarly for
permission and prohibition. For convenience, in what follows we use the notation
φ ⇒ C instead of the CL syntax [φ?]C.

3 A Contract Case Study

In what follows we consider part 7 of the contract given in Fig. 1 between a
service provider and a client, where the provider gives access to the Internet to
the client. We consider two parameters of the service: high and normal, which
denote the client’s Internet traffic. We will consider only the following clauses of
the contract.

7.1. The Client shall not:
a) supply false information to the Client Relations Department of the Provider.

7.2. Whenever the Internet Traffic is high then the Client must pay [price] immediately, or the
Client must notify the Provider by sending an e-mail specifying that he will pay later.

7.3. If the Client delays the payment as stipulated in 7.2, after notification he must immediately
lower the Internet traffic to the normal level, and pay later twice (2 ∗ [price]).

7.4. If the Client does not lower the Internet traffic immediately, then the Client will have to
pay 3 ∗ [price].

7.5. The Client shall, as soon as the Internet Service becomes operative, submit within seven
(7) days the Personal Data Form from his account on the Provider’s web page to the Client
Relations Department of the Provider.

We also add clause 11.2 as it is strongly related to clause 7.1 and the two
should be taken together:

11.2. Provider may, at its sole discretion, without notice or giving any reason or incurring any
liability for doing so:
b) Suspend Internet Services immediately if Client is in breach of Clause 7.1;

Model Checking Contracts – A Case Study 87

In what follows we formalise the above contract clauses. As part of the formali-
sation of a contract in CL we first have to define the assertions and actions:

φ = the Internet traffic is high
fi = client supplies false information to Client Relations Department
h = client increases Internet traffic to high level
p = client pays [price]
d = client delays payment
n = client notifies by e-mail
l = client lowers the Internet traffic

sfD = client sends the Personal Data Form to Client Relations Department
o = provider activates the Internet Service (it becomes operative)
s = provider suspends service

Note that we have the action h which does not appear explicitly in the example
clauses. Action h is implicit as it makes the proposition φ valid (the Internet
becomes high only if the client increases it). Action h can be considered as the
complement of action l which makes φ false (lowers the Internet traffic). The six
clauses above are written in CL as follows:

1. �FP (s)(fi)
2. �[h](φ ⇒ O(p + (d&n)))
3. �([d&n](O(l) ∧ [l]♦O(p&p)))
4. �([d&n · l]♦O(p&p&p))
5. �([o]O(sfD))

Clause 1 has a concise syntax and represents a contrary-to-prohibition. More
precisely, the CTP represents the prohibition F (fi) (clause 7.1) and the repa-
ration which should be enforced in case the prohibition is violated (in this case
P (s); the right of the provider to suspend the Internet service, clause 11.2).

Note that all the clauses are supposed to hold throughout the whole contract
because of the �. Clause 2 models clause 7.2 of the contract example and it
represents the fact that whenever the assertion φ holds (the Internet traffic of
the client is at the high level) then it must be the case that the client is obliged
to choose (+) between either paying immediately (p) or delaying the payment
by sending the notification (d&n).

Clauses 3 and 4 refer to the clauses 7.3 and 7.4 of the contract example. They
both refer to the moment after the client has delayed the payment ([d&n]).
Clause 3 states that the client has the obligation to lower the Internet traffic
(O(l)) and that after lowering the client should pay twice the price. On the
other hand, clause 4 specifies the obligation of the client to pay three times the
price in case he does not lower the Internet traffic (l). The two formulae may be
combined in a single formula using CTDs: �([d&n](Oϕ(l) ∧ [l]♦(O(p&p)) where
ϕ = O(p&p&p). Clause 5 formally represents clause 7.5 of the contract example.
It represents the obligation of the client to submit the form (O(sfD)) after the
Internet service becomes operative ([o]).

88 G. Pace, C. Prisacariu, and G. Schneider

Table 1. The translation function fT from CL to Cμ

(1) fT (O(&n
i=1ai)) = 〈{a1, . . . , an}〉(∧n

i=1Oai)
(2) fT (CO ⊕ CO) = fT (CO) ∧ fT (CO)
(3) fT (P (&n

i=1ai)) = 〈{a1, . . . , an}〉(∧n
i=1¬Fai)

(4) fT (CP ⊕ CP) = fT (CP) ∧ fT (CP)
(5) fT (F (&n

i=1ai)) = [{a1, . . . , an}](∧n
i=1Fai)

(6) fT (F (δ) ∨ [β]F (δ)) = fT (F (δ)) ∨ fT ([β]F (δ))
(7) fT (C1 ∧ C2) = fT (C1) ∧ fT (C2)
(8) fT (©C) = [any]fT (C)
(9) fT (C1 U C2) = μZ.fT (C2) ∨ (fT (C1) ∧ [any]Z ∧ 〈any〉�)
(10) fT (�C) = νZ.C ∧ [any]Z
(11) fT ([&n

i=1ai]C) = [{a1, . . . , an}]fT (C)
(12) fT ([(&n

i=1ai)α]C) = [{a1, . . . , an}]fT ([α]C)
(13) fT ([α + β]C) = fT ([α]C) ∧ fT ([β]C)
(14) fT ([ϕ?]C) = fT (ϕ) ⇒ fT (C)

3.1 Translating the CL Specification into Cμ

We extract a model from the CL clauses by first translating the language specifi-
cation into the extended μ-calculus Cμ where the semantics is given as a special
labelled transition system. The translation function fT which takes a CL for-
mula and returns a formula in the Cμ is shown in Table 1. The special syntax
[any] (or the dual 〈any〉) represents the fact that any action can be executed.
To represent obligations and prohibitions of a given action a we need the special
propositional constants Oa and Fa.

We briefly mention here the semantics of Cμ, see [13] for more details. The
formulae are interpreted over a labelled transition system (LTS). The labels
of the transitions are represented by multi-sets of actions (e.g. {p, p, p} is a
label corresponding to the CL concurrent action term p&p&p). The formulae
are interpreted over states as usual in modal logics with semantics on LTSs.
For example the expression φ ⇒ 〈p〉Op is interpreted in a state and should be
understood as: if the assertion φ holds in the state then 〈p〉Op should hold in
the same state. [p]C and 〈p〉C are interpreted as holding in the current state if
and only if in the next state reachable by action p the formula corresponding
to the translation of C holds. In Cμ the difference between the two operators is
that 〈p〉ϕ requires the existence of at least one next state reachable by p where
ϕ holds, where [p]ϕ is quantified universally, and thus the formula also holds in
case the set of states reachable by p is empty.

We will now translate the five CL clauses corresponding to the contract given
above, into Cμ. Note that we use the � and ♦ with their classical interpretation
from temporal logics; the last not being included in the Table 1. It is known [2]
that fT (♦C) = fT (UC) = μZ.C ∨ ([any]Z ∧〈any〉). In order to translate the
first clause of the CL representation above we can proceed as follows:

fT (�FP (s)(fi)) = νZ.fT (FP (s)(fi)) ∧ [any]Z,
where: fT (FP (s)(fi)) = fT (F (fi) ∧ [fi]P (s)) = [fi]Ffi ∧ [fi]〈s〉¬Fs.

Model Checking Contracts – A Case Study 89

In this manner, we use � operator in the clauses below simply as syntactic
sugar which is reduced to the ν operator in μ-calculus.

1. �[fi]Ffi ∧ [fi]〈s〉¬Fs

2. �[h](φ ⇒ (〈p〉Op ∧ 〈{d, n}〉(Od ∧ On)))
3. �[{d, n}](〈l〉Ol ∧ [l](μZ.〈{p, p}〉Op ∨ ([any]Z ∧ 〈any〉)))
4. �[{d, n}][l](μZ.〈{p, p, p}〉Op ∨ ([any]Z ∧ 〈any〉))
5. �[o]〈sfD〉OsfD

3.2 From Cμ to the LTS

In Fig. 2 we have pictured one model of the above clauses where we denote by
else all other actions different than the ones from the current node (e.g. for the
state s7 in the picture else = any \ {fi}).

Note that because of the semantics of the prohibition F (fi) (i.e., [fi]Ffi), we
would not need to explicitly add a transition from each state labelled with fi
to a state with the propositional constant Ffi. However, in the presence of a
CTP, as it is the case with clause 1, we need to do so in order to represent the
reparation P (s).

We attempt to build a model in the form of an LTS — in a certain sense an
implementation of the contract as specified. The process is done manually and
prone to error — to ensure correctness of the automata we build, we model check
them against the contract specification. Furthermore, multiple models satisfying
the contract specification exist, ranging from the weakest being equivalent to
the specification itself, to stronger and more concrete implementations. In this
paper we are not concerned with achieving the weakest model.

Although the weakest model is desirable to have, we can still reason about our
contract based on a (correct) model we build. Given a model M and contract
specification C, we start off by proving that the model really implements the
contract: M |= C. We note that when the model does not satisfy a property
π: M
|= π, it immediately follows that neither does the contract: C
|= π, thus
enabling us to discover bugs in our specification as translated from the natural
language, or in the original natural language contract itself. On the other hand,
using this approach we cannot prove the correctness of the original contract.
Were we able to obtain the weakest model, we would have been able to reason
directly about the contract specification itself.

In what follows, we will specify this model using the input language of NuSMV,
and prove that it is indeed a model of the CL formulae.

3.3 From the LTS to the NuSMV Input Syntax

In NuSMV [4], a model can be specified in two ways: either using assignments
or by direct specification. We choose to use the direct specification technique as
it enables us to translate our system more directly into NuSMV.

90 G. Pace, C. Prisacariu, and G. Schneider

Fs
¬

Ffi

Ol
OpOsfD,

Od On, Opφ ,

l
−

sfD

o

l

s

fi

{d,n}

fi h
p

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7s6

s8

s1

s2

Fig. 2. Example of a model for the five clauses written in CL

NuSMV uses state variables to identify states; the number of states is deter-
mined by the product of the number of different values each state variable can
take. There is also a second kind of variables, input variables which are meant
to specify labels of a labelled transition system. Since we have actions as labels,
we make substantial use of the input variables in our application.

We have defined an input variable for each atomic action of the CL spec-
ification. The type of the input variables is boolean so that if the value of
d = false then d is not an active label of the transition. Whenever a vari-
able is left unspecified then NuSMV interprets it as having any value so it cre-
ates a transition (or a state in case of state variables) for each value of the
variable.

In NuSMV it is easy to simulate the concurrent labels {d, n} of Cμ which mean
that the transition is taken if both actions d and n are executed concurrently:
we activate both input variables d = true ; n = true. We can also represent
the resource-awareness of the labels (i.e. the p&p of CL, or the {p, p} of Cμ) by
defining the input variable with the type range of integers. If p = 0 then the
transition is not labelled with the action p; if p = 1 then the transition is labelled
with one normal action p (like in the case of boolean type); but if p = 2 then
we take the transition if two copies of the action p are executed concurrently.
We have then the following declaration of variables:

IVAR
d : boolean ;
n : boolean ;
p : 0 .. 3 ;

Note that we may have empty transitions (with no label) by giving to all
the input variables the value false (or p = 0). Moreover, we may represent the
special action any of Cμ by leaving all input variables unspecified.

Model Checking Contracts – A Case Study 91

We have defined a state variable named state of enumeration type so it can
take only eight values, corresponding to the eight states depicted in Fig. 2.

VAR
state : {s1 ,s2 ,s3 ,s4 ,s5 ,s6 ,s7 ,s8} ;

Other variables are declared accordingly (e.g., high : boolean). Moreover,
we define a state variable of type boolean for each input variable. This is required
by the Cμ where we have a propositional constant Oa or Fa associated to each
atomic action a which enters under the scope of an obligation or of a prohibition
respectively:

F_s : boolean ; F_fi : boolean ;
O_p : boolean ; O_d : boolean ; O_n : boolean ;
O_l : boolean ; O_sfD : boolean ;

As an example, we show below the encoding of the initial state, and one of
its outgoing transitions, of the automaton in Fig. 2. We call the initial state s1.

INIT
(state = s1) & !high &
!F_fi & !O_p & !O_d & !O_n & !O_l & !O_sfD & !F_s ;

The transitions are specified using the TRANS keyword followed by a propo-
sitional formula which determines the pairs of states that form the transition
relation. The propositional formula contains names of state variable (which are
tested in the current state) and next expressions which refer to the value of the
state variables in the next state. It also contains the input variables to model
the labels of the transitions. Remember that any variable that is missing from
the formula is interpreted as having any value and will give rise to a number of
different transitions equal to the number of values it can take.

TRANS
--state variables of the current state

((state = s1) & !high &
!F_fi & !O_p & !O_d & !O_n & !O_l & !O_sfD & !F_s &

--input variables as the labels
(!fi & p = 0 & !d & !n & !l & !negl & !sfD & o & !s) &

--the values of the state variables in the next states
(next (state) = s6) & !next (high) &
next (! F_fi & !O_p & !O_d & !O_n & !O_l & !O_sfD & !F_s))

3.4 Model Checking the Contract

We propose to combine the contract specification and the model we build in
different ways with model checking techniques to help us improve the contract
and increase our confidence in our model.

Proving that the model satisfies the original clauses: Clearly, to have confidence
that we are reasoning using a correct model, we need to prove that the automaton

92 G. Pace, C. Prisacariu, and G. Schneider

of Fig. 2, specified in NuSMV1 respects the five CL clauses representing the
statements from the contract example. For this we have specified each clause as
a special LTL specification in NuSMV:

G ((fi -> X F_fi) & (fi -> X (s & X !F_s)))
G (h -> X (high -> ((p = 1 -> X O_p) &

((d & n) -> X (O_d & O_n)))))
G ((d & n) -> X ((l -> X O_l) & l -> X F (p = 2 -> X O_p)))
G ((d & n) -> X (l -> X F (p = 3 -> X O_p)))
G (o -> X (sfD -> X O_sfD))

The first, second and fourth properties go through immediately. The third
fails, but upon investigation, it turns out that the actual contract wording gave
a dependency between the second and third properties — the d&n action in
the third property only refers to ones produced in the context of the second
property (just after the Internet traffic going high and the user paying once).
This indicates that the two ought to be combined together either by adding extra
logic to indicate the dependency, or by merging then into a single property. We
choose the latter, obtaining:

G (h -> X (high -> ((p = 1 -> X O_p) & ((d & n) ->
X (O_d & O_n & (l -> X O_l) &

l -> X F (p = 2 -> X O_p))))))

This new property can be verified of our model.
Finally, the fifth property fails, suggesting that our model is incorrect. How-

ever, upon inspection it was realised that nothing in the contract specifies that
the activation of the service happens once, or that the user’s obligation is only
valid the first time the activation occurs. We choose to revise the original con-
tract to state that: “The first time the service becomes operative, the client is
obliged to send the Personal Data Form to Client Relations Department”. This
is formulated as the following property, which model checks:

(!o) U (o -> X(can_sfD & (sfD -> X O_sfD)))

An alternative solution is to ensure that the contract is only in force once the
Internet Service becomes operative, and simplify the property accordingly.

Verifying a property about client obligations: The first desirable property we
want to check on the contract model can be expressed in English as: “It is always
the case that whenever the Internet traffic is high, if the clients pays immediately,
then the client is not obliged to pay again immediately afterwards”. The property
is expressed in CL-like syntax2 as: �¬(φ ⇒ [p]¬O(p)). The property proves to be
false, as can be seen in the transcript below, which includes a counter-example:

1 The NuSMV code we have used is available on Nordunet3 project homepage:
http://www.ifi.uio.no/~gerardo/nordunet3/software.shtml

2 Notice that formally in CL there is no negation at the clause level.

http://www.ifi.uio.no/~gerardo/nordunet3/software.shtml

Model Checking Contracts – A Case Study 93

Fs
¬

Ffi

Ol
OpOsfD,

l
−

Fs
¬

Ffi

Ol
OpOsfD,

l
−

Od On, Od On,

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

s3

s4s5

s7s6

s8

s1

s2

sfD

o

l

s

fi

{d,n}

fi h

fi

fi
fi

fi

fi

else

else

s3

s4s5

s7s6

s8

s1

s2

a. b.

pp

φ φ

{p,p,p}

{p,p}

Fig. 3. The model of Fig. 2 corrected.

NuSMV > check_ltlspec
-- specification

G (! high | (p = 1 -> X (p = 1 -> X !O_p))) is false
-- as demonstrated by the following execution sequence
-> State: 2.1 <-

state = s1; o = 1
-> State: 2.2 <-

state = s2; sfD = 1
-> State: 2.3 <-

state = s3; O_p = 1; O_sfD = 1; h = 1
-- Loop starts here
-> State: 2.4 <-

state = s4; high = 1; O_sfD = 0; p = 1
-- Loop starts here
-> State: 2.5 <-

p = 1

The above counter-example shows that in state s4 of Fig. 2 the client must
fulfil one of the following obligations: or to pay (p), or to delay payment and
notify (d,n). However, after paying once, the automaton is still in a state with
high traffic (state s4), and thus the client is still obliged to pay again.

We give in Fig. 3-a the new model, which is proved correct with respect to
the above property. The difference is the transition s4

p−→ s3 which replaces
the one labelled with p from s4 to itself. From this it is easy now to modify the
original contract by introducing the following clause: “The provider guarantees
that if the Internet traffic of the Client reaches a high level and the Client pays
the [price] then it will not be obliged to pay the [price] again”.

Notice that though we have obtained a new model that satisfies the property
(and a clause in the original contract solving the above problem), the solution
is still not satisfactory, as the contract does not specify what happens after the

94 G. Pace, C. Prisacariu, and G. Schneider

client pays but does not decrease the Internet traffic. In the new model shown in
Fig. 3-a this is reflected by the fact that after taking the new added transition
(from s4 to s3), there is an implicit assumption that the Internet traffic is low.
For brevity we do not further analyse the contract in order to obtain the right
contract concerning this problem, though it can be done following a similar
approach as above.

Verifying a property about payment in case of increasing Internet traffic: The
checking of the previous property was done for the benefit of the client. We now
perform model checking in order to increase the confidence of the provider of
the service.

We are interested in proving that: “It is always the case that whenever Internet
traffic is high, if the client delays payment and notifies, and afterwards lowers
the Internet traffic, then the client is forbidden to increase Internet traffic unless
she/he pays twice”. This complicated English clause is specified in CL-like syntax
as: �(φ ⇒ [d&n · l](F (h) U donep&p)).

Here donep&p is an assertion added to specify that the client has paid twice.
Notice that in order to prove the property we need to extend the NuSMV model
of the contract with a propositional constant corresponding to donep&p which is
true only after a transition labelled {p, p} is taken.

In Fig. 3-a we show the control structure of the LTS. The additional state
variable donep&p is added to the NuSMV model, thus effectively introducing
two states for every one in Fig. 3-a, with different values for the state variable.

The original property proves to be false, since from state s4 (where φ holds),
after d&n · l, it is possible to increase Internet traffic in state s7 (due to the else
label), so neither F (h) nor donep&p hold.

Though it was not apparent at first sight, and confirmed by the result given
by the tool, the above clause allow the client to go from normal to high Internet
traffic many times and pay the penalty (2 ∗ [price]) only once. The problem is
that after the client lowers the Internet traffic, he might get a high traffic again
and postpone the payment till a future moment. This problem comes from the
ambiguity of the language. Note that the CL formalisation in the clauses 3 and
4 use the ♦ to model the fact that a statement will hold eventually in the future
but not necessarily immediately (expressions “pay later” in clause 7.3 and “will
have to pay” in clause 7.4 are the ambiguities). The eventually was translated
with the help of the special syntax else that we see in Fig. 3-a. We use the
counter-example given by NuSMV to construct the model in Fig. 3-b where the
property holds. The difference is at the transition from s7 to s3 where we have
changed the label to the multi-set label {p, p}. In CL the solution is to add a new
clause corresponding to the property above, and the original contract should be
extended with the English version of the property as expressed above. Note that
a similar property can be stated for the clause 4 for which we have given the
solution in Fig. 3-b also by replacing the label of the transition from s6 to s3 by
the multi-set label {p, p, p}.

Model Checking Contracts – A Case Study 95

4 Final Discussion

In this paper we have shown how model checking techniques and tools can be
applied to analyse contracts. In particular, we have used NuSMV [4] to model
check conventional contracts specified using the language CL. In this paper,
we presented multiple uses of model checking for reasoning about contracts.
Firstly, we use model checking to increase our confidence in the correctness of
the model with respect to the original natural language contract. Secondly, by
finding errors in the model, we can identify problems with the original natural
language contract or its interpretation into CL. Finally, we enable the signatories
to safeguard their interests by ensuring certain desirable properties (and lack of
undesirable ones).

About NuSMV: NuSMV [4] is the successor of the milestone symbolic model
checker SMV [10]. Symbolic model checking [3] is based on the clever encoding
of the states using binary decision diagrams or related techniques, but still re-
lies on the classical model checking algorithm. NuSMV allows the checking of
properties specified in CTL, LTL, or PSL. More recently NuSMV has included
input variables with which it is possible to specify directly a labelled transition
system. This feature of NuSMV has been very useful in our context.

Related Work: To our knowledge, model checking contracts is quite an unex-
plored area where only few works can be found [15,5]. The main difference with
our approach is that in [15] there is no language for writing contracts, instead
automata are used to model the different participants of a contract, i.e. there is
no model of the contract itself but only of the behaviour of the contract signa-
tories. Many safety and liveness properties identified as common to e-contracts
are then verified in a purchaser/supplier case study using SPIN [7]. Similarly, in
[5] Petri nets are used to model the behaviour of the participants of a contrac-
tual protocol. Though in [15] it is claimed that modelling the signatories gives
modularity, adding clauses to a given contract implies modifying the automata.
In our case, adding clauses to a contract is done as in any declarative language,
without changing the rest. Though in our current implementation we would also
need to rewrite the verification model, this should not be seen as a disadvantage;
given that CL has formal semantics in Cμ the model could be obtained automat-
ically after the modifications. An advantage of our approach is the possibility of
explicitly writing conditional obligations, permissions and prohibitions, as well
as CTDs and CTPs. We are not aware of any other work on model checking
e-contracts along the same line as ours. See [13] and [15] (and references therein)
for further discussions, and other approaches, on formalisations of contracts.

Future Work: The approach we have followed has few drawbacks. First notice
that the way we have obtained the model for the least fix-point in the Cμ formula
3 in Section 3.1 was modelled as the cycle (s7, s3, s4, s5)∗, which may indeed be
an infinite loop as we do not have accepting conditions in our labelled Kripke
structure nor fairness constraints. This of course would need to be refined in

96 G. Pace, C. Prisacariu, and G. Schneider

order to guarantee that the cycle will eventually finish. Moreover, in order to
be able to prove properties about actions which must have been performed, we
should extend our language with a constructor done(·) to be applied to actions,
meaning that the action argument was performed (as with the donep&p in the
example). This will definitely facilitate specifying properties like the last one
of the previous section concerning the prohibition on actions by the client. We
are currently working on improving the above aspects in order to make a more
precise analysis.

We have presented a manual translation from the Cμ semantics of the contract
written in CL into the input language of NuSMV. We plan to implement a tool
to automatically model check contracts written in CL. We can benefit from the
counter-example generation to fix the original contract, as we have briefly shown
in Section 3.4. The underlying model checker of such tool could be NuSMV or
another existing μ-calculus model checker (e.g., [1,9]).

With such a tool the whole model checking process will be accelerated facilitat-
ing its use and thus making it easy to prove other interesting general properties
about e-contracts, as suggested in [15]. Besides such classical liveness or safety
properties we are also interested in properties more specific to e-contracts, such
as: finding the obligations or prohibitions of one of the parties in the contract;
listing of all the rights that follow after the fulfilling of an obligation; what are
the penalties for whenever violating an obligation or prohibition; determining
whether a given participant is obliged to perform contradictory actions.

The generation of the (automata-like) model that we did by hand in Section
3 can be done automatically along the lines of existing LTL-to-Büchi automata
translators (like ltl2smv or ltl2ba). [14] presents a comprehensive overview of
the state-of-the-art of such tools.

In the current state of development, the language CL cannot explicitly express
timing constraints. We intend to extend the language with such features in order
to be able to specify and verify real-time properties.

Acknowledgements. We would like to thank Martin Steffen for suggestions on
an early draft of this paper.

References

1. Biere, A.: mu-cke - efficient mu-calculus model checking. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 468–471. Springer, Heidelberg (1997)

2. Bradfield, J., Stirling, C.: Modal Logics and Mu-Calculi: an Introduction, pp. 293–
330. Elsevier, Amsterdam (2001)

3. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS 1990, pp. 428–439 (1990)

4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

5. Daskalopulu, A.: Model checking contractual protocols. In: JURIX 2000, Frontiers
in Artificial Intelligence and Applications Series, pp. 35–47 (2000)

Model Checking Contracts – A Case Study 97

6. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: STOC 1977,
pp. 286–294 (1977)

7. Holzmann, G.: The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading (2003)

8. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–
354 (1983)

9. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program. 46, 255–281 (2003)

10. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dor-
drecht (1993)

11. McNamara, P.: Deontic logic. In: Handbook of the History of Logic, vol. 7, pp.
197–289. North-Holland Publishing, Amsterdam (2006)

12. Pnueli, A.: The temporal logic of programs. In: FOCS 1977, pp. 46–57 (1977)
13. Prisacariu, C., Schneider, G.: A formal language for electronic contracts. In: Bon-

sangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–189.
IFIP (2007)

14. Rozier, K.Y., Vardi, M.Y.: Ltl satisfiability checking. In: Bosnacki, D., Edelkamp,
S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 182–200 (2007)

15. Solaiman, E., Molina-Jiménez, C., Shrivastava, S.K.: Model checking correctness
properties of electronic contracts. In: Orlowska, M.E., Weerawarana, S., Papa-
zoglou, M.M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 303–318.
Springer, Heidelberg (2003)

	Model Checking Contracts – A Case Study
	Introduction
	A Formal Language for Contracts
	A Contract Case Study
	Translating the \mathcal{CL} Specification into \mathcal{C}\mu
	From \mathcal{C}\mu to the LTS
	From the LTS to the NuSMV Input Syntax
	Model Checking the Contract

	Final Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

