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Extending Typestate Checking Using 
Conditional Liveness Analysis 

Robert E. Strom and Daniel M. Yellin, Member, ZEEE 

Abstract-We present a practical extension to typestate check- 
ing which is capable of proving programs free of uninitialized 
variable errors even when these programs contain conditionally 
initialized variables where the initialization of a variable depends 
upon the equality of one or more ‘@tagn variables to a constant. 
The user need not predeclare the relationship between a condi- 
tionally initialized variable and its tags, and this relationship may 
change from one point in the progrqm to another. Our technique 
generalizes liveness analysis to conditional liveness analysis. 

Like typestate checking, our technique incorporates a dataflow 
analysis algorithm in which each point in a program is labeled 
with a lattice point describing statically tracked information, 
including the initialization of variables. The labeling is then 
used to check for programming errors such as referencing a 
variable which may be uninitialized. Our technique incorporates 
a more expressive lattice, including predicates of the form: “I is 
initialized if y equals 2.” Because the number of tags per variable 
is small, the added complexity of the analysis is usually small. 

The efficiency of our technique is due, to a large extent, 
to the fact that we use a backwards analysis of the program 
(instead of the forward analysis used in the original typestate 
checking algorithm). Our results suggest that backwards analy- 
sis-tracking only those properties which need to hold to make 
the subsequent statements correct-can be more efficient than 
forward analysis-tracking all properties which are made true 
by the preceding statements. We conclude with some additional 
applications of our techniques to program checking. 

Index r e m -  Conditionals, dataflow analysis, liveness analy- 
sis, program correctness, typestate checking. 

I. INTRODUCTION 

A. Typestate Checking 

OST modem programming languages include the no- M tion that program variables have a specific type. Com- 
pilers for these languages perform type checking, which en- 
sures that operations on these variables are type correct. The 
benefits of type checking are well known, and include more 
errors being caught at compile time and better code being 
produced by the compiler. 

Typestate can be viewed as an extension to the notion of 
type. It arises from the realization that, at any point in time, 
the operations that can be performed on a variable depend 
not only on the type of the variable, but also upon the state 
of the variable. For instance, one can only read or write a 
variable of type file if one has already performed the open 
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operation on that variable. As another example, one can only 
reference a variable (of any type) if that variable has already 
been assigned. Typestate checking [12], [ll] is a dataflow 
analysis technique for verifying that the operations performed 
on variables obey the typestate rules of the language. In this 
paper, we will focus on the aspect of typestate checking 
that guarantees that all variables are initialized before being 
referenced. It is a straightforward exercise to generalize the 
ideas in this paper to the more general typestate checking 
problem. 

The benefits of typestate checking are similar to the benefits 
of type checking: more errors being caught at compile time and 
better code generation. In particular, when typestate checking 
is embedded in a compiler, the compiler will reject programs 
unless it can guarantee that all variables are initialized before 
they are referenced. This eliminates a class of errors which 
have unpredictable results, which may remain undetected for 
a long time, and which are hard to isolate when they do 
occur. Additionally, the compiler is able to insert finalization 
code automatically, avoiding the need for run-time garbage 
collection. Finally, if the entire language is checked, it can be 
made secure [12], allowing untrusted programs to coexist in 
a single environment. 

The Nil and Hermes languages [15], [13] incorporate type- 
state explicitly into the language definition: the language 
definition specifies the allowed order of operations for each 
data type, function signatures are required to be annotated with 
typestates,’ and the compilers implement typestate checking. 

B. Extending Typestate Checking 

In general, it is an undecidable problem to determine if all 
variables in a program are initialized before being referenced. 
Therefore, any algorithm to check for this property must 
perform some sort of approximation. In the Nil and Hermes 
typestate tracking algorithm, any program which references a 
conditionally initialized variable will be rejected. To obtain the 
effect of conditional initialization, the programmer must define 
a new variant type that holds the conditionally initialized 
variable. Before referencing this variable, one needs to perform 
a reveal statement, which essentially causes a run-time 
check to make sure that the variable is indeed initialized. (If it 

‘These annotations indicate the change of typestate that a parameter 
will occur in the function body (e.g., will become initialized or become 
uninitialized). Without these annotations, one could not typestate check a 
module without seeing the code body of the function being called. With these 
annotations, one can prove a module to be typestate correct independent of 
the function bodies being invoked. 

t.00 0 1993 IEEE 
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is not initialized, an exception handler will be invoked.) While 
this has the “virtue” of forcing the programmer to provide 
more explicit documentation, it is also inconvenient, inflexible, 
and causes a run-time check. 

Consider the program in Fig. 1. At the end of statement 
2, c and d are conditionally initialized. Using the original 
typestate algorithm, the typestate at this program point would 
be <init(a), init@), uninit(c), uninit(d)>; since c and d are 
only conditionally initialized, their typestate is “coerced” to 
uninit. The typestate algorithm implemented in the Nil and 
Hermes compilers would report an error at the point where c 
and d are conditionally printed. 

The corresponding legal Hermes code would need to use a 
variant type. This program is given in Fig. 2. 

In this paper, we define a more general typestate tracking 
algorithm which is able to prove programs to be typestate 
correct, even when they conditionally initialize and reference 
variables. Of course, our new algorithm still has some restric- 
tions on the type of conditional initialization that is allowed, 
but it is quite general in its applicability. Indeed, this new 
algorith 

m would be able to determine that the program of Fig. 1 
is typestate correct. 

The method given in this paper allows the initialization of a 
variable w to be contingent upon the value of other variables, 
called the tugs of w. This approach is more general than using 
variants, as 1) a variable may be conditionally initialized even 
though it has not been declared as a variant, 2) any number of 
variables can serve as a tag for a single variable, and 3) the 
significance of a particular tag may be different at different 
points in the program. We do all this without significantly 
increasing the complexity of typestate analysis, and without 
compromising the requirement for avoiding all uninitialized 
variable errors at compile-time. It also eliminates the extra 
run-time checks that are associated with reveal statements. 
As a result, programmers need not declare as much infor- 

mation. It becomes possible to eliminate the variant datatype, 
together with its relatively clumsy operations, from the Hermes 
language. It also becomes possible to use typestate analysis in 
languages like C or Fortran that lack a discriminated variant 
type, but in which programmers frequently use conditional 
initialization.* Furthermore, with this approach, the compiler 
can generate finalization earlier in the program than in previous 
approaches. 

Because our algorithm is based upon a generalization of 
liveness analysis, an additional contribution of this paper is to 
present a more precise algorithm for liveness analysis. 

C. Related Work 
Vpestate was introduced by Strom and Yemini in [U], [ll]. 

Embedding typestate within a programming language provides 
a general framework for specifying what states a datatype must 
be in for operations on that datatype to be legal. These papers 
also introduced an algorithm for checking the correctness of 
programs with respect to a typestate framework. 

*Of course, detecting initialization becomes harder in languages that contain 
pointers, due to aliasing. Detecting pointer aliasing is an area of current 
research, but will not be addressed in this paper. 

a := i x e a d 0 ;  /e statment 1 e/ 
/e mtateDent 2 e/ 

/e statmant 2a e/ 

if o = O  
then 

b := i s e a d 0 ;  
c := i z e a d 0 ;  

b := i x e a d 0 ;  
d := axead0;  

elso 
/e statement 2b e/ 

end i f ;  
iprint(b)  ; 
i f  a = O  

then 

else 

end if: 

/e statement 3 e/ 
/e mtatment 4 e/ 

iprint(c)  ; 

s q r i n t  (d) ; 

Fig. 1. Program containing conditional initializations. 

t.gtype: anumeration(’int’, ’string’) ; 
1Irtype: variant of tagtypd 

’ int’  -> c: integer {init}, 
’string’ -> d: chu8tring {init}); 

1 :  1Irtype; 
a := isead0: /e statment 1 e/ 
i f  o = o  /* mtatUDt 2 */ 

then 
b := iseadO; 
/* usip the vulaut  U an integer value e/ 
unite U.C f r a  i sead0;  

b := i-readO; 

unite u.d f r a  s s d 0 ;  

/* statmant 28 */ 

01.0 

I* statment 2b e/ 
/e u s i p  the variant U a .tring ralue */ 

end i f ;  
Lprint 0) ; 
if ( c u e  of U =  ’int’) 

/* 8tEt.IUL’Z 3 */ 
I *  8 t E t N m t  4 e/ 

than 
/* usmrt that the l u i a n t  hold. an integer value */ 
r e v u l  u.c; 

.1.. 
/* us- that the variant hold8 a string value e/ 
reveal u.d; 

and if: 

iprint (u.e) : 

sprint(u.d) : 

Fig. 2. Program rewritten to use variants. 

Other work, such as that found in 141, [lo], have also used 
dataflow analysis techniques for checking program correcmess, 
including detection of references to uninitialized variables. In 
[3], Eggert introduces an approach for statically detecting the 
dereferencing of uninitialized pointers. It has features simil& 
to Hermes’ variants. 

The algorithms given in the papers referenced above all rely 
on dataflow analysis to check program correctness. Almost 
all data flow problems can be made more exact by taking 
conditionals into consideration. For instance, Wegman and 
Zadeck’s paper on conditional constant propagation [16] uses 
a lattice to track whether a variable has a known constant 
value or not at a specific program point. They are able to use 
constant propagation to detect impossible program paths. As 
applied to checking for initialization, their algorithm would 
correctly determine programs to be typestate correct when a 
variable was initialized along possible paths aad uninitialized 
along only dead paths. It would not, however, deal with cases 
such as the programming in Fig. 1. 
In a previous paper [14], we examined various methods 

for generalizing typestate, while still limiting the complexity 
of the required analysis. These methods &e similar to other 
approaches in the literature, including relational dataflow anal- 

__- - 
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ysis of Jones and Muchnik [7], qualified dataflow analysis of 
Holley and Rosen [5], and abstract interpretation of Cousot and 
Cousot [2]. Although we were able to show useful polynomial 
time generalizations of typestate, these methods are still fairly 
inefficient. 

Part of the reason for this inefficiency was that we used a 
forward analysis of the program. Not knowing what variables 
would actually be conditionally referenced later in the pro- 
gram, we had to keep around a lot of information concerning 
possible tag  relationship^.^ In the worst case, the size of the 
lattice value that labeled each program point was bounded by 
a (small) polynomial in the number of variables and the range 
of these variables. 

D. Overview 

Our previous research led us to consider a backward analysis 
of the program. This method is a generalization of liveness 
analysis [l]. A variable v is live at a program point p iff there 
exists a program point p’ on the path from p to the program 
exit and either: 1) p’ outputs w, or 2) p’ uses w to compute 
a live variable. An equivalent interpretation of “U is live at 
p” is the assertion “the program is correct only if the variable 
U is initialized at p.” Our approach is to generalize liveness 
by tracking assertions of the form “the program is correct 
only if the variable w is initialized at p whenever pred holds.” 
The predicate preri, which we call a liveness condition, is an 
assertion on some other variable which tags the liveness of 
variable U. For instance, in Fig. 1, we find that after statement 
2, c must be initialized only if a = Old must be initialized 
only if a # 0, and a and b are unconditionally live. 

To make our technique efficient, we impose the restriction 
that a liveness condition must be a conjunction, but not 
a disjunction, e.g., we could have x E [1-..3] A y E 
[-.. . . . 7,9 001 (which means x equals a value in the range 
1 . ... 3 and y # 8 )  serving as a condition for the liveness of 
variable w ,  but not x E [1-.3] V y  E [-00...7,9.-.00] . 

The organization of the rest of this paper is as follows: In 
Section 11, we give a rigorous description of our technique: we 
define the predicates which we are to track, and give rules for 
tracking these predicates in a simple imperative language. In 
Section 111, we describe how finalizations can be generated 
earlier using the algorithm in this paper. We conclude by 
discussing possible generalizations and new applications of 
our technique. 

11. CONDITIONAL TYPESTATE ANALYSIS 
Our algorithm for typestate analysis is obtained as a solution 

to a (backward) monotone dataflowframework (see [8], [9] for 
formal definitions). To do so, we describe: 1) a semi-lattice L 
with meet operation n, 2) the initial lattice value associated 
with the exit node of the program flow graph, and 3) the 

3Consider the program fragment if f ( ) then read( x )  ; a := 1; 
b := 2 endif; It may be that x is being conditionally initialized and a = 
1 is a tag for this fact. Or it may be that b = 2 is the tag. Or it may be that 
both are tags. If, later in the program, we have a conditional reference of the 
form if a = 1 then print ( x )  endif; it becomes clear that only a 
is the tag for x. If, instead of scanning the program from beginning to end we 
instead scan backwards, we will immediately see that x is only conditionally 
referenced when a=l. Hence, we need not guess as to what the tag for a is. 

monotonic functions on L associated with each edge of the 
program flow graph. 

A. Intervals and Ranges 

This section provides definitions we will use in the next 
section to define our lattice. 

An interval w . . . x over the domain of integers denotes all 
integer values between w and x (including w and x), where 
w 5 x. When w = -00, there is no lower bound; similarly, 
when x = 00, there is no upper bound. The interval y + . . z  
is said to be contiguous to the interval w .  . . x if y = x + 1. 
The interval y . . . z is said to overlap the interval W .  . x if 
w 5 y 5 x 5 z. We call w (x) the lower (upper) bound of 
the interval w .  . . x. 
A range is a list of intervals [Zbl . . . ubl , Zb2 . . . ubz , . . . , 

Zbk e . . u b k ]  over the integers such that ubi < Zb;+l(l 5 i < 

Given a range r,  we write e E T iff there exists an interval 
2 u . e . x  in r and e E w.-.x. For any ranges r1 and r2, 
we define r g  = union(rl ,r2) to be the range such that 
e E union(rl ,r2) iff e E 7-1 V e E 7-2. 

The union of a set of ranges is computed by taking the 
union of the intervals in each range, merging all contiguous 
or overlapping ranges, and ordering the resultant intervals 
appropriately. 

Example: The union of [ l a  . .3,5. - 71 and [-ca.. . -3, 
10.. . 001 is [-CO.. . -3,l.. .3,5.. .7,10.. . 001. The union 
of [1...3,6...7] and [2...4,8...10] is [1..-4,6-.-10]. 

B. The Lattice 

I C ) .  

The lattice L that we use is a refinement of the lattice 
traditionally used for liveness analysis. Each lattice point in 
L is of the form < V I  : pred1,wp : p r e d 2 , . - . , u ,  : r e d , > ,  
where each wi is a program variable, and each pred; is a 
predicate which is either 

e true, 
a false, or 
e a conjunction of one or more conditions of the form 

uj E range. The variable uj appearing in a condition is called 
a tag for w;. 

Notice that true can be viewed as a conjunction of zero 
conditions. 

The interpretation of labeling a program point p’with a 
lattice point < V I  : predl,  u2 : pred2, + . , U, : pred,> is to 
assert that the program is correct only if, at point p ,  for each 
variable w;,pred; + initiaZized(w;); i.e., if p e d ;  is true at 
p ,  then ‘U; must be initialized at p .  Notice that the assertion 
“vi must be initialized at p” is equivalent to the statement “vi 
is live at p.” In particular, the special case predi = true 
corresponds to the assertion that w; is unconditionally live 
(must be initialized), and the special case predi = fa lse  
corresponds to the assertion that ‘U; is dead (need not be 
initialized). 

A condition of the form wj E [x . . x] for some integer 
x will be abbreviated as wj = x; a condition of the form 
uj E [-cm . . x - 1, z+ 1 . . - 001 will be abbreviated as uj # x. 

The w; component of a lattice point Z E L is denoted 1 vi, 
and takes the form of a predicate predi, asserting under what 
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true a = 2  4 = 2 A b = 3  a = 2  
fdse b = 2 a = 2 A c # 2 a E [-00..1,4..00] 
true true I a = 2  a 2 3  

conditions w; must be initialized. The set of possible values of 
predi form a semi-lattice L,,, . In order to describe the structure 
of the semi-lattice L, we first describe the structure of the 
semi-lattice L,,: . 

The top element in L,, is false and the bottom element is 
true. For any pair of predicates 11 12 E L,, we define 11 5 12 

iff 12 11 (12 logically implies 1 1 ) .  The meet of any pair of 
lattice points 11 and 12 is 11 V 12, provided that this point is 
expressible in the required form. Otherwise, the meet is the 
“best approximation” within the lattice to the predicate 11 V 12. 

Examples: 

The meet can be computed as follows. 
e For any 1 , l  n false = 1 .  
e Otherwise, variable t is a tag in 11 n 12 only if t is a tag 

in both 11 and 12. 

e If t is a tag in both 11 and 12 such that t E range1 is 
a condition in 11 and t E range2 is a condition in 12,  then 
t E union(range1, rangen) is a condition in 11 n 12. 

0 An empty set of conditions is the same as true. 
Besides the meet, another operation we will sometimes 

perform on a lattice point 1 is to conjoin another predicate pred 
with 1. This produces the new lattice point 1 A pred. Notice 
that if 1 is false, or if 1 and pred are mutually exclusive, then 
1 A pred is false. For instance, if 1 is x E [-m . - 4 , 7 .  m] 
and pred is x E [5. e .  61, then 1 A pred = false.  

The semi-lattice L is defined as the cross-product semi- 
lattice L = <L,, , . . . , L,,,, >, whose meet is simply the 
componentwise meet of the predicates associated with each 
variable. 

The lattice value associated with (the entry to) a node n 
of a program flow graph will be denoted I , .  We call I ,  the 
typestate at n.  The component of the lattice value associated 
with variable U at node n (1, .U) will be called the typestate of 
U at n.  For instance, if I ,  U = true, then U is unconditionally 
live at entry to n.  

Analysis begins with an assignment of false to the typestate 
of each variables at the exit node, indicating that each variable 
is dead at exit. For the program to be correct, the analysis 
must terminate with a typestate of false (dead) assigned to 
all variables at the entry node. The program is illegal if any 
variable is live or conditionally live at the entry node. By our 
interpretation, such a variable would have to be initialized at 
a point where all variables are known to be uninitialized. 

While a primary goal of typestate analysis is to determine 
whether or not all variables are dead at the entry node or not, 
an additional consequence of applying typestate analysis is to 
generate finalization code, as we shall discuss in Section 111. 

C. Program Flow Graph Functions 
To simplify this description of conditional typestate, we 

apply it to a small language containing only assignment, input, 
output, conditional, and loop statements. 

In a dataflow problem, one associates with each edge 
e = < p ,  s> in the program flow graph a monotonic function 
fe : L + L. Since we are doing backwards flow analysis, 
f e  maps a typestate 1, at the successor node into a typestate 
1, al. the predecessor node. The function fe depends upon the 
operation at p .  We define fe for each operation in our simple 
language. When defining f e ,  we describe the typestate at p for 
each variable U whose typestate at p differs from its typestate 
at s. For all other variables U’, the typestate of U’ is the same 
at p as at s. It is straightforward to verify that each function 
f e  i:s indeed monotonic. 

Assignment Statements: The effect of an assignment state- 
ment ut := f (U,,,. . . , w S k )  on the typestate of a variable x 
depends upon whether z is the target variable (u t ) ,  a source 
variable (U,$), or some other variable. 

First consider the target variable ut. If ut is not also a source 
variable (e.g., U := u+l) ,  then the typestate of ut on entry (that 
is, lr, -ut) will always be false since this assignment fulfills any 
obligation to initialize vt. If wt is also a source variable, then 
its typestate on entry is given by the rules for source variables 
described below. In any case, if 1, . ut is false (i.e., dead), then 
the assignment is superfluous-it can be ignored. If 1, ut is 
pred, the assignment need only be executed when pred is true. 
This will be discussed in more depth later in this section. 

Next, consider a source variable U,,. A source variable U,, 
is required to be live on entry if either: 1) ut is live on exit, so 
U,, ’5; value is needed to compute ut, or 2) U,, is live on exit, 
so wSt’s value is needed in any case. We therefore want the 
lattice point 1, . U,, to be the highest semi-lattice point implied 
by both the predicates for U,, and ut. This point is obtained 
by taking the meet of I ,  U,, and 1, . U,,. 

The following table illustrates the typestate 1, -U for different 
values of 1, . U for an assignment to x which references t. 

Finally, we consider variables that are neither the target 
nor a source of the assignment statement, whose typestate 
can nevertheless be affected by the assignment. In particular, 
suppose that at 3, ut is a tag for some variable w. That is, 1, .U 
has Ihe form . . . ut E ranget A . . . Then 1, . U will depend 
upon the nature of the assignment. We distinguish three cases: 
1) assignments of the form ut := c for some constant c, 2) 
assignments of the form ut := U,, and 3) all other assignments. 

1) Suppose the statement at p is wt := c. In the case 
where c E ranget,ut can be removed as a tag for U. The 
predicate indicates that if ut E ranget (and perhaps some other 
conditions hold), U must be initialized. As this assignment 
makes ut E ranget true, this condition can be removed from 
the predicate. In the case where c ranget, then lp-u becomes 
false The predicate indicates that U need only be initialized 
when ut E rangetl but the assignment makes this predicate 
false. 

The following table shows the typestate of U before and 
after the assignment x := 3 for different typestates 1, w in 
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which x is a tag. 

2) Suppose the statement at p is vt := U,. Then if v must 
be initialized only if ut has some property after the statement, 
it must be initialized only if v, has the same property before 
the statement. So we just substitute U, for ut if ut appears as 
a tag in the typestate. This may require simplification (i.e., if 
vs was already a tag for U). 

The following table shows the typestate of v before and 
after the assignment x := y for different typestates 1, . v in 
which x is a tag. 

3) If the statement has any other form, then we drop ut 
as a tag in 1, U, i.e., we remove the conjunct ut E ranget 
from the typestate of l, . U. Since we cannot determine if 
the assignment to ut makes the conjunct true or false, we 
pessimistically require v to be initialized regardless of the 
value of ut. 

In the description given here, we actually require that 
superfluous assignments be removed and conditionally needed 
assignments be transformed to execute precisely when needed. 
To see why this is so, consider the statement z := a + b, with 
posttypestate <a : false ,  b : false ,  z : false>. By the rules 
given in this section, the typestate upon entry to this statement 
will also be <a : false ,  b : false ,  z : false>. If a is never 
initialized before this statement is executed, the program will 
be found to be typestate correct, but during execution of the 
statement, a’s value will be undefined. Hence, we actually 
require that this statement be removed from the generated 
code. If intrpducing these transformations is undesirable, it 
would not be hard to change our computation of the typestate 
so that these transformations would not be necessary! 

Input Statements: Since the statement input v assigns to 
v an arbitrary value, the typestate on entry to input v can be 
computed in the same way the typestate on entry to v := expr 
is computed, where expr is an arbitrary expression. The rules 
of the last section show how this computation is done. 

Output Statements: The output statement print v re- 
quires that its argument be initialized. The typestate of v is 
made true (unconditionally live) on entry print to a statement. 

Conditionals: A conditional statement has the form if 
expr then statements1 else statements2 end if. The 
entry node p has two exit edges: the edge <p, SI> leading 
to statements1 when expr = true,  and the edge <p,sz> 
leading to statements2 when expr = false .  

4For instance, we could change the rules so that an assignment to a variable 
z would require each source variable to be initialized upon entry to the 
assignment statement, regardless of whether or not z is live or dead after 
the assignment statement. 

The typestate at the entry node p of a conditional is 
obtained by taking the meet of the typestates f < p , s l > ( l s , )  and 
f<p,sz>(ls,) since a variable is only required to be initialized 
upon entry to the conditional if it must be initialized on either 
branch of the conditional. 

For each source variable v appearing in expr, the functions 
f<,,,,> and f<,,,,> create a typestate true. For every other 
variable, the functions f<p,sl> and f < p , s z >  are identity func- 
tions unless expr has a form consistent with a test of a tag 
variable, that is, expr is of the form v = c,v  # c , v  5 c, 
or v 2 c for some constant c. In this case, f<,,,]> conjoins 
v = c, (U # c, v E [-W. c] or v E [ c .  . .CO], respectively) 
to the typestate of all variables except for v; f < p , s z >  conjoins 
v # c , ( v  = c,v  E [ c +  1 . . - 0 0 ] ,  or v E [ - c o . . . c -  11, 
respectively) to the typestate of all variables except for U. 
These functions indicate that a variable that is live on one 
branch of the conditional is live on entry to the conditional 
only if that branch is taken. 

The following table shows f<p,s l>(ls l )  .U, f < p , s z > ( 1 s 2 )  .U, 
and their meet 1, . v for different values of l , ,  v and I,, v 
when the expression of the conditional is if x = 3. 

l., .U = true z = 2 h y = 3  a = 2 A b = 3  
l,.u = false 2 = 2 A z = 3  a = 2 A e = 3  

fdde I z = 3 A a = 2 A b = 3  

Of course, in the conditional if x = 3, x is itself referenced, 
so the typestate 11 . x is made true. 

Example: We can apply what we have discussed so far to 
our earlier example, Fig. 1. The typestate on entry to statement 
3 is <a : true,  b : true,c : a = 0 ,d  : a # O>. The typestate 
at entry to statement 2a is <a : true,  b : false ,  c : false ,  d : 
a # O>; the typestate at entry to statement 2b is <a : true,  b : 
false ,  c : a = 0,  d : f alse>. The test a = 0 conflicts with the 
a # 0 in the tag for d; the inverse test a # 0 conflicts with the 
a = 0 in the tag for c, so the typestate on entry to statement 
2 is simply <a : true,  b : false ,  c : false ,  d : false>. 

Since statement 1 assigns a,  the entry typestate has all 
variables dead, and the program is legal. 

Loops: The loop while expr repeat statements end 
while can be expanded into a flow graph containing a 
conditional test; before entering the loop body, a conditional 
determines whether or not the loop body is reexecuted. There- 
fore, no new functions f e  need to be introduced. For example, 
the program flow graph for the program of Fig. 3 is given in 
Fig. 4. 

However, it may occasionally be necessary to analyze the 
loop more than once in order to reach a solution. The worst 
case complexity analysis is discussed in Section 11-D. 

Fig. 3 illustrates a program in which this iteration takes 
place. The typestate of z entering statement 3 is <z : x = 
3 A b = 2>. At the bottom of the while loop, it is 
<z : a = 5 A x = 3 A b = 2> during the first iteration 
of typestate assignment. (This is because the exit from the 
while loop corresponds to a branch of the implicit if 
statement of the form “else a = 5.”) At the entry to the 
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while (a # 5) repeat I* mtatenent I */ 

/. mtateaent 2 */ 
... 
i f  (a=  3) 

then z := 3; a :E 4; 
elme a := 6 end i f ;  

end while; 
if (2 = 3) 

then i f  ( 6  = 2) then print I end i f ;  end i f ;  
/+ mtatment 3 */ 

Fig. 3. A loop requiring more than one pass. 

t 

I 

Fig. 4. The program flow graph for the program of Fig. 3. 

or thle range associated with a tag becomes larger. The latter 
is equivalent to adding an interval to the range associated with 
that tag. The number of intervals that can be added to a range 
of a typestate I, . w at a node n is bounded by the number 
of conditionals reachable from n. This is because the upper 
or lower bound c in any interval added to the range of the 
typestate must arise from a reachable conditional of the form 
q op P. 

Since the number of tags for a variable w can be as large 
as the number of variables in the program, the total number 
of times a typestate 1, + w can change is VC,, where V is 
the number of variables in the program and C, is the number 
of conditionals reachable from node n. This implies that the 
number of times a typestate I, can change is V2C,, and the 
worst case complexity of the program is O(V2N2) ,  where N 
is the number of nodes in the dataflow graph. 

In practice, however, we believe that the actual cost of the 
algorithm in this paper is O(kVN)  for some small constant IC. 
This is because, for most programs, the number of variables 
that are conditionally live is small, and the number of tags 
for these variables is also small. Since any dataflow algorithm 
that tracks all variables must do work proportional to O ( V N ) ,  
including the original typestate algorithm, conditional typestate 
analysis provides improved generality without a large increase 
in complexity. 

For some restricted programs, one can formally show that 
the complexity is better behaved than the worst case bounds 
given above. These programs loosely correspond to programs 
where Hermes-like variants are replaced by tag variables. More 
formally, consider programs in which one can partition its 
variables into a set of tags and a set of regular variables. 
I f  1) for all the conditionals in the program of the form 
w = constant, (w 5 constant etc.), w is a tag variable, and 2) 
assignment to tag variables can only reference constants, then 
one can show that the complexity of the program is bounded 
by Gl(CVN), where C is the number of conditionals in the 
program and V and N are as given above. We now sketch a 
proof of this fact. 

Consider any typestate 1, . w in the program. We argue that 
only tag variables appear in the typestate 1, . w ,  and that if an 
interval x . . . w is added to the range of the tag t in Z,.v causing 
the typestate to change, then there must exist conditionals 
reachable from R. involving the tag t and the constant x or 
20 (one of x or 20 may be -/+oa). If this statement is true, 

t h e n  clause, it is false; at the entry to the else clause, it is 
<z : x = 3 A b = 2>. At the entry to statement 2, it becomes 
<z : a # 3 A x = 3 A b = 2>. Prior to the w h i l e  test, it is 
<z : a # 3 A a # 5 A x = 3 A b = 2>. Taking the meet with 
the typestate computed previously after statement 2, one gets 
<z : a # 3 A x = 3 A b = 2>. The second time around, the 
typestate on entry to the t h e n  clause is lowered from false to 
<z : b = 2.> The typestate of z on entry to statement 2 also 
becomes <z : b = 2>. This is the correct fixed point and is 
the typestate of z at entry to statement 1. 

D. Complexity 
To implement our dataflow analysis problem, we use a 

work-list algorithm [8], [6]. This algorithm will only recom- 
pute the typestate at a node (visit the node) if the typestate at 
a successor node has changed values. Since each node of our 
dataflow graph has a bounded number of successors (two, to 
be precise), the total number of visits to nodes of the graph 
is proportional to the number of nodes in the graph times the 
numbers of typestate changes that can occur at a node. 
Since we are dealing with a monotone dataflow analysis 

framework, a node n changing its typestate is equivalent to its 
taking on a lower value in the semi-lattice. This means that for 
some variable w ,  either a tag for w is dropped from the typestate 

then i:he number of times the typestate 1 , ~  can change is equal 
to the: number of conditionals reachable from n. This is at most 
C, the number of conditionals in the program. Hence, the entire 
typestate I, can change at most O(CV) times. Therefore, the 
total complexity is at most (CVN). 

To see why the above statement is true, we note that 
only conditionals and assignments introduce new tags and/or 
increase the range associated with a tag in a typestate. (Recall 
that loops are modeled using conditionals.) Since, by 1) above, 
for all conditionals of the form t = const ( t  5 const, etc.), t is 
a tag variable, it is straightforward to verify that the conditional 
will only introduce the tag t with a range involving the constant 
const into the entry typestate I, . w for any variable w. Hence, 
we need only concern ourselves with assignment statements. 
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The only potential problem with an assignment statement 
is that it may “transfer” the range associated with one tag 
variable in a typestate to another tag variable, e.g., the typestate 
v : tl = const may become v : t 2  = const, even though 
there is no conditional involving t 2  and the constant const. 
This can occur if the assignment is of the form wt := U,. 

In this case, the rules given above call for substituting ‘us 
for ut in any typestate with a wt tag. However, since by 2) 
above, the assignment to any tag variable can only reference 
constants, this sort of assignment statement will never arise in 
the restricted programs under consideration. 

111. COERCIONS 
One important benefit of typestate analysis is that it enables 

the compiler to automatically insert storage deallocation (final- 
ization) code. This is especially important when a program’s 
execution can be interrupted in a number of different places 
due to an exceptional condition. 
block 

call f(x); 
new a; 

call f(x); 

new b; 

call f(x); 

. . .  

. . .  

. . .  

on exception(f.error); 

end block; 
In this example, error is an exception that may be raised 

by the function f. Suppose that the variables a,b, etc., are 
large data structures whose storage is dynamically allocated 
and freed. If an exception occurs, the exception handler may 
be entered either with a and b both initialized, or with a alone 
initialized, or with neither a nor b initialized. In NiVHermes 
[15], [13], neither a nor b is allowed to be referenced in the 
exception handler-both variables are treated as uninitialized. 

At the end of the program, we require all initialized variables 
to be finalized. We could enforce this by run-time garbage 
collection. However, we can also use typestate analysis to 
insert static finalization when it can be statically determined 
that a data structure is dead. Since we are assuming that a 
and b will be uninitialized in the exception handler, we insert 
operations to guarantee that a and b are uninitialized on entry 
to the exception handler, regardless of the path taken. In the 
above example, a discard (finalization) of a is inserted on the 
path between the second call of f and the handler, and a 
discard of a and b is inserted on the path between the third 
call of f and the handler. The inserted operations are called 
coercions. 

Automatic finalization proved extremely practical when it 
was implemented in Nil and Hermes. The use of coercions 
was generalized to other kinds of finalization besides freeing 
storage (e.g., closing open files). In these languages, dangling 
references to memory cannot occur nor can programs termi- 
nate without either freeing up or passing off resources they 

. . .  

own. Coercions give the run-time environment the option of 
reclaiming memory eagerly rather than performing periodic 
reclamation (garbage collection). In Nil and Hermes, the 
determination of where to put coercions was made by the 
same forward analysis algorithm used to check for typestate 
correctness. 

Backwards dataflow analysis can also be used to generate 
coercions. In fact, using backwards analysis, we sometimes 
finalize a variable at an earlier point in the program (thereby 
freeing storage sooner). In what follows, we give the general 
rules for how these finalizations could be generated. Some- 
times it may be preferable not to finalize data structures earlier 
(e.g., because the allocated structure can be reused or because 
extra code may be required that slows the application). This 
paper does not address the issue of when early finalizations 
should be used. 

Rvo situations give rise to coercions. The first situation 
occurs whenever for some edge e =< p ,  s >, with pretypestate 
1, and posttypestate l,, there exists a lower (less “dead” than 
l,) typestate 1: such that fe(ZL) = 1,. In this case, we insert a 
coercion operation C after p such that C has a posttypestate 
of 1, and a pretypestate of l:.’ 

{ 4 1 

{ l :  1 
( 1 s  } 

p: statement; 

C 

Here is the simplest example: Suppose there is a statement 
print v with posttypestate v : false and pretypestate U : 
true. That is, the variable v is not needed after it is printed. 
The function associated with the print statement will map a 
posttypestate of v : true to the same pretypestate of U : true. 
Hence, by the rule given above, we insert a coercion (after 
the print statement) with a pretypestate of v : true and a 
posttypestate of v : f h e .  We call this coercion discard w. 
This guarantees that v will be finalized immediately after the 
print statement. 

What if the posttypestate were ‘U : a = 2? In that case, the 
value of v will still be needed if a is 2, but will not be needed 
if a is not 2, so the coercion is if a # 2 then discard 
U .  The tracking of conditional liveness enables us to finalize w 
early whenever it is correct to do so. Using forward analysis, 
in which initialization rather than liveness is tracked, w would 
be finalized at some later point where the path merged with 
some other path along which v was uninitialized. 

The second situation in which coercions must be inserted 
occurs when two (backwards) paths join and the meet of the 
two typestates is taken. For example, suppose that on two 
branches of an if statement, the typestates are ‘U : a = 2 A  b = 
3 and w : b = 3 A c = 4. Then the meet is w : b = 3. The 
statement if (a  # 2 )  A (b = 3) then discard v will be 
generated on entry to the left branch, and the statement if 
( c  # 4) A (b = 3) then discard v will be generated 
on entry to the right branch. (The code for finalizing w when 
b = 3 will occur somewhere above the conditional when the 

50ne way to understand this is as follows: since fe(Ib) = I , ,  the operation 
does not cause I ,  to become uninitialized to I , ,  but only to I : .  Hence, we 
need to insert a code to perform the missing finalization. 
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typestate for w goes from w : b = 3 to v : false.)  Once again, 
this assures that variable v will be finalized at an earlier point 
than traditional (forward) typestate analysis. 

Finalization coercions are often viewed as simply an opti- 
mization which enables storage to be freed sooner. However, 
conditional liveness can be extended to other cases in which 
finalization has an actual semantic effect. For example, a 
language could support variables of type file, with operations 
open, read write, and close. The same analysis can be used 
to guarantee that files are closed on program termination by 
generating close statements at appropriate points. 

Iv. FUTURE WORK AND CONCLUSION 

A. Other Applications 

The framework given in this paper is useful for checking 
program correctness (that all variables referenced in a program 
have been defined). It is equally useful for optimizing com- 
pilers that make use of liveness information, as the technique 
given in this paper will provide more precise information than 
the traditional liveness algorithm. 

It is possible to generalize the framework given here to 
other applications as well. The common property of these 
applications is that when a statement (e.g., p r i n t  2) is 
encountered, an expectation is generated for what must precede 
in order for the statement to be legal (e.g., an assignment to 
2). Other types of statements could generate other types of 
expectations which could be encoded as typestates and tracked 
using a similar conditional analysis. 

For example, suppose we wished to weaken the requirement 
that the type of a variable z remains fixed throughout the 
program. The variable could be, for example, a real in some 
contexts and a string in others. At some places, it could even 
be either real or string, depending on the value of variable 
a. Without testing this tag, it would be illegal to perform 
operations which assumed one or the other type. The properties 
real and string become typestate properties rather than type 
properties. Values of the lattice will have a form such as 
<b = 0 + string(z);b # 0 + real(z)>. 

B. Conclusion 

Experience with Nil and Hermes has shown typestate check- 
ing to be an extremely valuable tool for detecting errors, 
generating finalizations, and assuring security in a program- 
ming language. 

To make typestate checking practical for languages like C, 
stronger analysis techniques must be used to handle condi- 
tional initialization. The techniques presented here provide the 
needed extra strength without undue cost. They also suggest 
potential useful generalizations to other dataflow analysis 
problems. 
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