
478 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 5, MAY 1993

Extending Typestate Checking Using
Conditional Liveness Analysis

Robert E. Strom and Daniel M. Yellin, Member, ZEEE

Abstract-We present a practical extension to typestate check-
ing which is capable of proving programs free of uninitialized
variable errors even when these programs contain conditionally
initialized variables where the initialization of a variable depends
upon the equality of one or more ‘@tagn variables to a constant.
The user need not predeclare the relationship between a condi-
tionally initialized variable and its tags, and this relationship may
change from one point in the progrqm to another. Our technique
generalizes liveness analysis to conditional liveness analysis.

Like typestate checking, our technique incorporates a dataflow
analysis algorithm in which each point in a program is labeled
with a lattice point describing statically tracked information,
including the initialization of variables. The labeling is then
used to check for programming errors such as referencing a
variable which may be uninitialized. Our technique incorporates
a more expressive lattice, including predicates of the form: “I is
initialized if y equals 2.” Because the number of tags per variable
is small, the added complexity of the analysis is usually small.

The efficiency of our technique is due, to a large extent,
to the fact that we use a backwards analysis of the program
(instead of the forward analysis used in the original typestate
checking algorithm). Our results suggest that backwards analy-
sis-tracking only those properties which need to hold to make
the subsequent statements correct-can be more efficient than
forward analysis-tracking all properties which are made true
by the preceding statements. We conclude with some additional
applications of our techniques to program checking.

Index r e m - Conditionals, dataflow analysis, liveness analy-
sis, program correctness, typestate checking.

I. INTRODUCTION

A. Typestate Checking

OST modem programming languages include the no- M tion that program variables have a specific type. Com-
pilers for these languages perform type checking, which en-
sures that operations on these variables are type correct. The
benefits of type checking are well known, and include more
errors being caught at compile time and better code being
produced by the compiler.

Typestate can be viewed as an extension to the notion of
type. It arises from the realization that, at any point in time,
the operations that can be performed on a variable depend
not only on the type of the variable, but also upon the state
of the variable. For instance, one can only read or write a
variable of type file if one has already performed the open

Manuscript received April 30, 1990; revised April 28, 1992. Recommended

The authors are with the IBM T.J. Watson Research Center, Yorktown

IEEE Log Number 9202417.

by Mark Moriconi.

Heights, NY 10598.

0098-5589/93$03

operation on that variable. As another example, one can only
reference a variable (of any type) if that variable has already
been assigned. Typestate checking [12], [ll] is a dataflow
analysis technique for verifying that the operations performed
on variables obey the typestate rules of the language. In this
paper, we will focus on the aspect of typestate checking
that guarantees that all variables are initialized before being
referenced. It is a straightforward exercise to generalize the
ideas in this paper to the more general typestate checking
problem.

The benefits of typestate checking are similar to the benefits
of type checking: more errors being caught at compile time and
better code generation. In particular, when typestate checking
is embedded in a compiler, the compiler will reject programs
unless it can guarantee that all variables are initialized before
they are referenced. This eliminates a class of errors which
have unpredictable results, which may remain undetected for
a long time, and which are hard to isolate when they do
occur. Additionally, the compiler is able to insert finalization
code automatically, avoiding the need for run-time garbage
collection. Finally, if the entire language is checked, it can be
made secure [12], allowing untrusted programs to coexist in
a single environment.

The Nil and Hermes languages [15], [13] incorporate type-
state explicitly into the language definition: the language
definition specifies the allowed order of operations for each
data type, function signatures are required to be annotated with
typestates,’ and the compilers implement typestate checking.

B. Extending Typestate Checking

In general, it is an undecidable problem to determine if all
variables in a program are initialized before being referenced.
Therefore, any algorithm to check for this property must
perform some sort of approximation. In the Nil and Hermes
typestate tracking algorithm, any program which references a
conditionally initialized variable will be rejected. To obtain the
effect of conditional initialization, the programmer must define
a new variant type that holds the conditionally initialized
variable. Before referencing this variable, one needs to perform
a reveal statement, which essentially causes a run-time
check to make sure that the variable is indeed initialized. (If it

‘These annotations indicate the change of typestate that a parameter
will occur in the function body (e.g., will become initialized or become
uninitialized). Without these annotations, one could not typestate check a
module without seeing the code body of the function being called. With these
annotations, one can prove a module to be typestate correct independent of
the function bodies being invoked.

t.00 0 1993 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:50 from IEEE Xplore. Restrictions apply.

STROM AND YELLIN: FXTENDING TYPESTATE CHECKING 419

is not initialized, an exception handler will be invoked.) While
this has the “virtue” of forcing the programmer to provide
more explicit documentation, it is also inconvenient, inflexible,
and causes a run-time check.

Consider the program in Fig. 1. At the end of statement
2, c and d are conditionally initialized. Using the original
typestate algorithm, the typestate at this program point would
be <init(a), init@), uninit(c), uninit(d)>; since c and d are
only conditionally initialized, their typestate is “coerced” to
uninit. The typestate algorithm implemented in the Nil and
Hermes compilers would report an error at the point where c
and d are conditionally printed.

The corresponding legal Hermes code would need to use a
variant type. This program is given in Fig. 2.

In this paper, we define a more general typestate tracking
algorithm which is able to prove programs to be typestate
correct, even when they conditionally initialize and reference
variables. Of course, our new algorithm still has some restric-
tions on the type of conditional initialization that is allowed,
but it is quite general in its applicability. Indeed, this new
algorith

m would be able to determine that the program of Fig. 1
is typestate correct.

The method given in this paper allows the initialization of a
variable w to be contingent upon the value of other variables,
called the tugs of w. This approach is more general than using
variants, as 1) a variable may be conditionally initialized even
though it has not been declared as a variant, 2) any number of
variables can serve as a tag for a single variable, and 3) the
significance of a particular tag may be different at different
points in the program. We do all this without significantly
increasing the complexity of typestate analysis, and without
compromising the requirement for avoiding all uninitialized
variable errors at compile-time. It also eliminates the extra
run-time checks that are associated with reveal statements.
As a result, programmers need not declare as much infor-

mation. It becomes possible to eliminate the variant datatype,
together with its relatively clumsy operations, from the Hermes
language. It also becomes possible to use typestate analysis in
languages like C or Fortran that lack a discriminated variant
type, but in which programmers frequently use conditional
initialization.* Furthermore, with this approach, the compiler
can generate finalization earlier in the program than in previous
approaches.

Because our algorithm is based upon a generalization of
liveness analysis, an additional contribution of this paper is to
present a more precise algorithm for liveness analysis.

C. Related Work
Vpestate was introduced by Strom and Yemini in [U], [ll].

Embedding typestate within a programming language provides
a general framework for specifying what states a datatype must
be in for operations on that datatype to be legal. These papers
also introduced an algorithm for checking the correctness of
programs with respect to a typestate framework.

*Of course, detecting initialization becomes harder in languages that contain
pointers, due to aliasing. Detecting pointer aliasing is an area of current
research, but will not be addressed in this paper.

a := i x e a d 0 ; /e statment 1 e/
/e mtateDent 2 e/

/e statmant 2a e/

if o = O
then

b := i s e a d 0 ;
c := i z e a d 0 ;

b := i x e a d 0 ;
d := axead0;

elso
/e statement 2b e/

end i f ;
iprint(b) ;
i f a = O

then

else

end if:

/e statement 3 e/
/e mtatment 4 e/

iprint(c) ;

s q r i n t (d) ;

Fig. 1. Program containing conditional initializations.

t.gtype: anumeration(’int’, ’string’) ;
1Irtype: variant of tagtypd

’ int’ -> c: integer {init},
’string’ -> d: chu8tring {init});

1 : 1Irtype;
a := isead0: /e statment 1 e/
i f o = o /* mtatUDt 2 */

then
b := iseadO;
/* usip the vulaut U an integer value e/
unite U.C f r a i sead0;

b := i-readO;

unite u.d f r a s s d 0 ;

/* statmant 28 */

01.0

I* statment 2b e/
/e u s i p the variant U a .tring ralue */

end i f ;
Lprint 0) ;
if (c u e of U = ’int’)

/* 8tEt.IUL’Z 3 */
I * 8 t E t N m t 4 e/

than
/* usmrt that the l u i a n t hold. an integer value */
r e v u l u.c;

.1..
/* us- that the variant hold8 a string value e/
reveal u.d;

and if:

iprint (u.e) :

sprint(u.d) :

Fig. 2. Program rewritten to use variants.

Other work, such as that found in 141, [lo], have also used
dataflow analysis techniques for checking program correcmess,
including detection of references to uninitialized variables. In
[3], Eggert introduces an approach for statically detecting the
dereferencing of uninitialized pointers. It has features simil&
to Hermes’ variants.

The algorithms given in the papers referenced above all rely
on dataflow analysis to check program correctness. Almost
all data flow problems can be made more exact by taking
conditionals into consideration. For instance, Wegman and
Zadeck’s paper on conditional constant propagation [16] uses
a lattice to track whether a variable has a known constant
value or not at a specific program point. They are able to use
constant propagation to detect impossible program paths. As
applied to checking for initialization, their algorithm would
correctly determine programs to be typestate correct when a
variable was initialized along possible paths aad uninitialized
along only dead paths. It would not, however, deal with cases
such as the programming in Fig. 1.
In a previous paper [14], we examined various methods

for generalizing typestate, while still limiting the complexity
of the required analysis. These methods &e similar to other
approaches in the literature, including relational dataflow anal-

__- -
- 1 -

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:50 from IEEE Xplore. Restrictions apply.

480 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 19, NO. 5 , MAY 1993

ysis of Jones and Muchnik [7], qualified dataflow analysis of
Holley and Rosen [5], and abstract interpretation of Cousot and
Cousot [2]. Although we were able to show useful polynomial
time generalizations of typestate, these methods are still fairly
inefficient.

Part of the reason for this inefficiency was that we used a
forward analysis of the program. Not knowing what variables
would actually be conditionally referenced later in the pro-
gram, we had to keep around a lot of information concerning
possible tag relationship^.^ In the worst case, the size of the
lattice value that labeled each program point was bounded by
a (small) polynomial in the number of variables and the range
of these variables.

D. Overview

Our previous research led us to consider a backward analysis
of the program. This method is a generalization of liveness
analysis [l]. A variable v is live at a program point p iff there
exists a program point p’ on the path from p to the program
exit and either: 1) p’ outputs w, or 2) p’ uses w to compute
a live variable. An equivalent interpretation of “U is live at
p” is the assertion “the program is correct only if the variable
U is initialized at p.” Our approach is to generalize liveness
by tracking assertions of the form “the program is correct
only if the variable w is initialized at p whenever pred holds.”
The predicate preri, which we call a liveness condition, is an
assertion on some other variable which tags the liveness of
variable U. For instance, in Fig. 1, we find that after statement
2, c must be initialized only if a = Old must be initialized
only if a # 0, and a and b are unconditionally live.

To make our technique efficient, we impose the restriction
that a liveness condition must be a conjunction, but not
a disjunction, e.g., we could have x E [1-..3] A y E
[-.. . . . 7,9 001 (which means x equals a value in the range
1 3 and y # 8) serving as a condition for the liveness of
variable w , but not x E [1-.3] V y E [-00...7,9.-.00] .

The organization of the rest of this paper is as follows: In
Section 11, we give a rigorous description of our technique: we
define the predicates which we are to track, and give rules for
tracking these predicates in a simple imperative language. In
Section 111, we describe how finalizations can be generated
earlier using the algorithm in this paper. We conclude by
discussing possible generalizations and new applications of
our technique.

11. CONDITIONAL TYPESTATE ANALYSIS
Our algorithm for typestate analysis is obtained as a solution

to a (backward) monotone dataflowframework (see [8], [9] for
formal definitions). To do so, we describe: 1) a semi-lattice L
with meet operation n, 2) the initial lattice value associated
with the exit node of the program flow graph, and 3) the

3Consider the program fragment if f () then read(x) ; a := 1;
b := 2 endif; It may be that x is being conditionally initialized and a =
1 is a tag for this fact. Or it may be that b = 2 is the tag. Or it may be that
both are tags. If, later in the program, we have a conditional reference of the
form if a = 1 then print (x) endif; it becomes clear that only a
is the tag for x. If, instead of scanning the program from beginning to end we
instead scan backwards, we will immediately see that x is only conditionally
referenced when a=l. Hence, we need not guess as to what the tag for a is.

monotonic functions on L associated with each edge of the
program flow graph.

A. Intervals and Ranges

This section provides definitions we will use in the next
section to define our lattice.

An interval w . . . x over the domain of integers denotes all
integer values between w and x (including w and x), where
w 5 x. When w = -00, there is no lower bound; similarly,
when x = 00, there is no upper bound. The interval y + . . z
is said to be contiguous to the interval w . . . x if y = x + 1.
The interval y . . . z is said to overlap the interval W . . x if
w 5 y 5 x 5 z. We call w (x) the lower (upper) bound of
the interval w . . . x.
A range is a list of intervals [Zbl . . . ubl , Zb2 . . . ubz , . . . ,

Zbk e . . u b k] over the integers such that ubi < Zb;+l(l 5 i <

Given a range r, we write e E T iff there exists an interval
2 u . e . x in r and e E w.-.x. For any ranges r1 and r2,
we define r g = union(rl ,r2) to be the range such that
e E union(rl ,r2) iff e E 7-1 V e E 7-2.

The union of a set of ranges is computed by taking the
union of the intervals in each range, merging all contiguous
or overlapping ranges, and ordering the resultant intervals
appropriately.

Example: The union of [l a . .3,5. - 71 and [-ca.. . -3,
10.. . 001 is [-CO.. . -3,l.. .3,5.. .7,10.. . 001. The union
of [1...3,6...7] and [2...4,8...10] is [1..-4,6-.-10].

B. The Lattice

I C) .

The lattice L that we use is a refinement of the lattice
traditionally used for liveness analysis. Each lattice point in
L is of the form < V I : pred1,wp : p r e d 2 , . - . , u , : r e d , > ,
where each wi is a program variable, and each pred; is a
predicate which is either

e true,
a false, or
e a conjunction of one or more conditions of the form

uj E range. The variable uj appearing in a condition is called
a tag for w;.

Notice that true can be viewed as a conjunction of zero
conditions.

The interpretation of labeling a program point p’with a
lattice point < V I : predl, u2 : pred2, + . , U, : pred,> is to
assert that the program is correct only if, at point p , for each
variable w;,pred; + initiaZized(w;); i.e., if p e d ; is true at
p , then ‘U; must be initialized at p . Notice that the assertion
“vi must be initialized at p” is equivalent to the statement “vi
is live at p.” In particular, the special case predi = true
corresponds to the assertion that w; is unconditionally live
(must be initialized), and the special case predi = fa lse
corresponds to the assertion that ‘U; is dead (need not be
initialized).

A condition of the form wj E [x . . x] for some integer
x will be abbreviated as wj = x; a condition of the form
uj E [-cm . . x - 1, z+ 1 . . - 001 will be abbreviated as uj # x.

The w; component of a lattice point Z E L is denoted 1 vi,
and takes the form of a predicate predi, asserting under what

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:50 from IEEE Xplore. Restrictions apply.

STROM AND YELLIN: EXTENDING TYPESTATE CHECKING

h =
12 =
h n b =

481

true a = 2 4 = 2 A b = 3 a = 2
fdse b = 2 a = 2 A c # 2 a E [-00..1,4..00]
true true I a = 2 a 2 3

conditions w; must be initialized. The set of possible values of
predi form a semi-lattice L,,, . In order to describe the structure
of the semi-lattice L, we first describe the structure of the
semi-lattice L,,: .

The top element in L,, is false and the bottom element is
true. For any pair of predicates 11 12 E L,, we define 11 5 12

iff 12 11 (12 logically implies 1 1) . The meet of any pair of
lattice points 11 and 12 is 11 V 12, provided that this point is
expressible in the required form. Otherwise, the meet is the
“best approximation” within the lattice to the predicate 11 V 12.

Examples:

The meet can be computed as follows.
e For any 1 , l n false = 1 .
e Otherwise, variable t is a tag in 11 n 12 only if t is a tag

in both 11 and 12.

e If t is a tag in both 11 and 12 such that t E range1 is
a condition in 11 and t E range2 is a condition in 12, then
t E union(range1, rangen) is a condition in 11 n 12.

0 An empty set of conditions is the same as true.
Besides the meet, another operation we will sometimes

perform on a lattice point 1 is to conjoin another predicate pred
with 1. This produces the new lattice point 1 A pred. Notice
that if 1 is false, or if 1 and pred are mutually exclusive, then
1 A pred is false. For instance, if 1 is x E [-m . - 4 , 7 . m]
and pred is x E [5. e . 61, then 1 A pred = false.

The semi-lattice L is defined as the cross-product semi-
lattice L = <L,, , . . . , L,,,, >, whose meet is simply the
componentwise meet of the predicates associated with each
variable.

The lattice value associated with (the entry to) a node n
of a program flow graph will be denoted I , . We call I , the
typestate at n. The component of the lattice value associated
with variable U at node n (1, .U) will be called the typestate of
U at n. For instance, if I , U = true, then U is unconditionally
live at entry to n.

Analysis begins with an assignment of false to the typestate
of each variables at the exit node, indicating that each variable
is dead at exit. For the program to be correct, the analysis
must terminate with a typestate of false (dead) assigned to
all variables at the entry node. The program is illegal if any
variable is live or conditionally live at the entry node. By our
interpretation, such a variable would have to be initialized at
a point where all variables are known to be uninitialized.

While a primary goal of typestate analysis is to determine
whether or not all variables are dead at the entry node or not,
an additional consequence of applying typestate analysis is to
generate finalization code, as we shall discuss in Section 111.

C. Program Flow Graph Functions
To simplify this description of conditional typestate, we

apply it to a small language containing only assignment, input,
output, conditional, and loop statements.

In a dataflow problem, one associates with each edge
e = < p , s> in the program flow graph a monotonic function
fe : L + L. Since we are doing backwards flow analysis,
f e maps a typestate 1, at the successor node into a typestate
1, al. the predecessor node. The function fe depends upon the
operation at p . We define fe for each operation in our simple
language. When defining f e , we describe the typestate at p for
each variable U whose typestate at p differs from its typestate
at s. For all other variables U’, the typestate of U’ is the same
at p as at s. It is straightforward to verify that each function
f e i:s indeed monotonic.

Assignment Statements: The effect of an assignment state-
ment ut := f (U,,,. . . , w S k) on the typestate of a variable x
depends upon whether z is the target variable (u t) , a source
variable (U,$), or some other variable.

First consider the target variable ut. If ut is not also a source
variable (e.g., U := u+l) , then the typestate of ut on entry (that
is, lr, -ut) will always be false since this assignment fulfills any
obligation to initialize vt. If wt is also a source variable, then
its typestate on entry is given by the rules for source variables
described below. In any case, if 1, . ut is false (i.e., dead), then
the assignment is superfluous-it can be ignored. If 1, ut is
pred, the assignment need only be executed when pred is true.
This will be discussed in more depth later in this section.

Next, consider a source variable U,,. A source variable U,,
is required to be live on entry if either: 1) ut is live on exit, so
U,, ’5; value is needed to compute ut, or 2) U,, is live on exit,
so wSt’s value is needed in any case. We therefore want the
lattice point 1, . U,, to be the highest semi-lattice point implied
by both the predicates for U,, and ut. This point is obtained
by taking the meet of I , U,, and 1, . U,,.

The following table illustrates the typestate 1, -U for different
values of 1, . U for an assignment to x which references t.

Finally, we consider variables that are neither the target
nor a source of the assignment statement, whose typestate
can nevertheless be affected by the assignment. In particular,
suppose that at 3, ut is a tag for some variable w. That is, 1, .U
has Ihe form . . . ut E ranget A . . . Then 1, . U will depend
upon the nature of the assignment. We distinguish three cases:
1) assignments of the form ut := c for some constant c, 2)
assignments of the form ut := U,, and 3) all other assignments.

1) Suppose the statement at p is wt := c. In the case
where c E ranget,ut can be removed as a tag for U. The
predicate indicates that if ut E ranget (and perhaps some other
conditions hold), U must be initialized. As this assignment
makes ut E ranget true, this condition can be removed from
the predicate. In the case where c ranget, then lp-u becomes
false The predicate indicates that U need only be initialized
when ut E rangetl but the assignment makes this predicate
false.

The following table shows the typestate of U before and
after the assignment x := 3 for different typestates 1, w in

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:50 from IEEE Xplore. Restrictions apply.

482 IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 5, MAY 1993

which x is a tag.

2) Suppose the statement at p is vt := U,. Then if v must
be initialized only if ut has some property after the statement,
it must be initialized only if v, has the same property before
the statement. So we just substitute U, for ut if ut appears as
a tag in the typestate. This may require simplification (i.e., if
vs was already a tag for U).

The following table shows the typestate of v before and
after the assignment x := y for different typestates 1, . v in
which x is a tag.

3) If the statement has any other form, then we drop ut
as a tag in 1, U, i.e., we remove the conjunct ut E ranget
from the typestate of l, . U. Since we cannot determine if
the assignment to ut makes the conjunct true or false, we
pessimistically require v to be initialized regardless of the
value of ut.

In the description given here, we actually require that
superfluous assignments be removed and conditionally needed
assignments be transformed to execute precisely when needed.
To see why this is so, consider the statement z := a + b, with
posttypestate <a : false , b : false , z : false>. By the rules
given in this section, the typestate upon entry to this statement
will also be <a : false , b : false , z : false>. If a is never
initialized before this statement is executed, the program will
be found to be typestate correct, but during execution of the
statement, a’s value will be undefined. Hence, we actually
require that this statement be removed from the generated
code. If intrpducing these transformations is undesirable, it
would not be hard to change our computation of the typestate
so that these transformations would not be necessary!

Input Statements: Since the statement input v assigns to
v an arbitrary value, the typestate on entry to input v can be
computed in the same way the typestate on entry to v := expr
is computed, where expr is an arbitrary expression. The rules
of the last section show how this computation is done.

Output Statements: The output statement print v re-
quires that its argument be initialized. The typestate of v is
made true (unconditionally live) on entry print to a statement.

Conditionals: A conditional statement has the form if
expr then statements1 else statements2 end if. The
entry node p has two exit edges: the edge <p, SI> leading
to statements1 when expr = true, and the edge <p,sz>
leading to statements2 when expr = false .

4For instance, we could change the rules so that an assignment to a variable
z would require each source variable to be initialized upon entry to the
assignment statement, regardless of whether or not z is live or dead after
the assignment statement.

The typestate at the entry node p of a conditional is
obtained by taking the meet of the typestates f < p , s l > (l s ,) and
f<p,sz>(ls,) since a variable is only required to be initialized
upon entry to the conditional if it must be initialized on either
branch of the conditional.

For each source variable v appearing in expr, the functions
f<,,,,> and f<,,,,> create a typestate true. For every other
variable, the functions f<p,sl> and f < p , s z > are identity func-
tions unless expr has a form consistent with a test of a tag
variable, that is, expr is of the form v = c,v # c , v 5 c,
or v 2 c for some constant c. In this case, f<,,,]> conjoins
v = c, (U # c, v E [-W. c] or v E [c . . .CO], respectively)
to the typestate of all variables except for v; f < p , s z > conjoins
v # c , (v = c,v E [c + 1 . . - 0 0] , or v E [- c o . . . c - 11,
respectively) to the typestate of all variables except for U.
These functions indicate that a variable that is live on one
branch of the conditional is live on entry to the conditional
only if that branch is taken.

The following table shows f<p,s l>(ls l) .U, f < p , s z > (1 s 2) .U,
and their meet 1, . v for different values of l , , v and I,, v
when the expression of the conditional is if x = 3.

l., .U = true z = 2 h y = 3 a = 2 A b = 3
l,.u = false 2 = 2 A z = 3 a = 2 A e = 3

fdde I z = 3 A a = 2 A b = 3

Of course, in the conditional if x = 3, x is itself referenced,
so the typestate 11 . x is made true.

Example: We can apply what we have discussed so far to
our earlier example, Fig. 1. The typestate on entry to statement
3 is <a : true, b : true,c : a = 0 ,d : a # O>. The typestate
at entry to statement 2a is <a : true, b : false , c : false , d :
a # O>; the typestate at entry to statement 2b is <a : true, b :
false , c : a = 0, d : f alse>. The test a = 0 conflicts with the
a # 0 in the tag for d; the inverse test a # 0 conflicts with the
a = 0 in the tag for c, so the typestate on entry to statement
2 is simply <a : true, b : false , c : false , d : false>.

Since statement 1 assigns a, the entry typestate has all
variables dead, and the program is legal.

Loops: The loop while expr repeat statements end
while can be expanded into a flow graph containing a
conditional test; before entering the loop body, a conditional
determines whether or not the loop body is reexecuted. There-
fore, no new functions f e need to be introduced. For example,
the program flow graph for the program of Fig. 3 is given in
Fig. 4.

However, it may occasionally be necessary to analyze the
loop more than once in order to reach a solution. The worst
case complexity analysis is discussed in Section 11-D.

Fig. 3 illustrates a program in which this iteration takes
place. The typestate of z entering statement 3 is <z : x =
3 A b = 2>. At the bottom of the while loop, it is
<z : a = 5 A x = 3 A b = 2> during the first iteration
of typestate assignment. (This is because the exit from the
while loop corresponds to a branch of the implicit if
statement of the form “else a = 5.”) At the entry to the

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:50 from IEEE Xplore. Restrictions apply.

STROM AND YELLIN: EXTENDING TYPESTATE CHECKING 483

while (a # 5) repeat I* mtatenent I */

/. mtateaent 2 */
...
i f (a= 3)

then z := 3; a :E 4;
elme a := 6 end i f ;

end while;
if (2 = 3)

then i f (6 = 2) then print I end i f ; end i f ;
/+ mtatment 3 */

Fig. 3. A loop requiring more than one pass.

t

I

Fig. 4. The program flow graph for the program of Fig. 3.

or thle range associated with a tag becomes larger. The latter
is equivalent to adding an interval to the range associated with
that tag. The number of intervals that can be added to a range
of a typestate I, . w at a node n is bounded by the number
of conditionals reachable from n. This is because the upper
or lower bound c in any interval added to the range of the
typestate must arise from a reachable conditional of the form
q op P.

Since the number of tags for a variable w can be as large
as the number of variables in the program, the total number
of times a typestate 1, + w can change is VC,, where V is
the number of variables in the program and C, is the number
of conditionals reachable from node n. This implies that the
number of times a typestate I, can change is V2C,, and the
worst case complexity of the program is O(V2N2) , where N
is the number of nodes in the dataflow graph.

In practice, however, we believe that the actual cost of the
algorithm in this paper is O(kVN) for some small constant IC.
This is because, for most programs, the number of variables
that are conditionally live is small, and the number of tags
for these variables is also small. Since any dataflow algorithm
that tracks all variables must do work proportional to O (V N) ,
including the original typestate algorithm, conditional typestate
analysis provides improved generality without a large increase
in complexity.

For some restricted programs, one can formally show that
the complexity is better behaved than the worst case bounds
given above. These programs loosely correspond to programs
where Hermes-like variants are replaced by tag variables. More
formally, consider programs in which one can partition its
variables into a set of tags and a set of regular variables.
I f 1) for all the conditionals in the program of the form
w = constant, (w 5 constant etc.), w is a tag variable, and 2)
assignment to tag variables can only reference constants, then
one can show that the complexity of the program is bounded
by Gl(CVN), where C is the number of conditionals in the
program and V and N are as given above. We now sketch a
proof of this fact.

Consider any typestate 1, . w in the program. We argue that
only tag variables appear in the typestate 1, . w , and that if an
interval x . . . w is added to the range of the tag t in Z,.v causing
the typestate to change, then there must exist conditionals
reachable from R. involving the tag t and the constant x or
20 (one of x or 20 may be -/+oa). If this statement is true,

t h e n clause, it is false; at the entry to the else clause, it is
<z : x = 3 A b = 2>. At the entry to statement 2, it becomes
<z : a # 3 A x = 3 A b = 2>. Prior to the w h i l e test, it is
<z : a # 3 A a # 5 A x = 3 A b = 2>. Taking the meet with
the typestate computed previously after statement 2, one gets
<z : a # 3 A x = 3 A b = 2>. The second time around, the
typestate on entry to the t h e n clause is lowered from false to
<z : b = 2.> The typestate of z on entry to statement 2 also
becomes <z : b = 2>. This is the correct fixed point and is
the typestate of z at entry to statement 1.

D. Complexity
To implement our dataflow analysis problem, we use a

work-list algorithm [8], [6]. This algorithm will only recom-
pute the typestate at a node (visit the node) if the typestate at
a successor node has changed values. Since each node of our
dataflow graph has a bounded number of successors (two, to
be precise), the total number of visits to nodes of the graph
is proportional to the number of nodes in the graph times the
numbers of typestate changes that can occur at a node.
Since we are dealing with a monotone dataflow analysis

framework, a node n changing its typestate is equivalent to its
taking on a lower value in the semi-lattice. This means that for
some variable w , either a tag for w is dropped from the typestate

then i:he number of times the typestate 1 , ~ can change is equal
to the: number of conditionals reachable from n. This is at most
C, the number of conditionals in the program. Hence, the entire
typestate I, can change at most O(CV) times. Therefore, the
total complexity is at most (CVN).

To see why the above statement is true, we note that
only conditionals and assignments introduce new tags and/or
increase the range associated with a tag in a typestate. (Recall
that loops are modeled using conditionals.) Since, by 1) above,
for all conditionals of the form t = const (t 5 const, etc.), t is
a tag variable, it is straightforward to verify that the conditional
will only introduce the tag t with a range involving the constant
const into the entry typestate I, . w for any variable w. Hence,
we need only concern ourselves with assignment statements.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:50 from IEEE Xplore. Restrictions apply.

484

. I

IEEE TRANSACTIONS ON SOFIWARE ENGINEERING, VOL. 19, NO. 5, MAY 1993

The only potential problem with an assignment statement
is that it may “transfer” the range associated with one tag
variable in a typestate to another tag variable, e.g., the typestate
v : tl = const may become v : t 2 = const, even though
there is no conditional involving t 2 and the constant const.
This can occur if the assignment is of the form wt := U,.

In this case, the rules given above call for substituting ‘us
for ut in any typestate with a wt tag. However, since by 2)
above, the assignment to any tag variable can only reference
constants, this sort of assignment statement will never arise in
the restricted programs under consideration.

111. COERCIONS
One important benefit of typestate analysis is that it enables

the compiler to automatically insert storage deallocation (final-
ization) code. This is especially important when a program’s
execution can be interrupted in a number of different places
due to an exceptional condition.
block

call f(x);
new a;

call f(x);

new b;

call f(x);

. . .

. . .

. . .

on exception(f.error);

end block;
In this example, error is an exception that may be raised

by the function f. Suppose that the variables a,b, etc., are
large data structures whose storage is dynamically allocated
and freed. If an exception occurs, the exception handler may
be entered either with a and b both initialized, or with a alone
initialized, or with neither a nor b initialized. In NiVHermes
[15], [13], neither a nor b is allowed to be referenced in the
exception handler-both variables are treated as uninitialized.

At the end of the program, we require all initialized variables
to be finalized. We could enforce this by run-time garbage
collection. However, we can also use typestate analysis to
insert static finalization when it can be statically determined
that a data structure is dead. Since we are assuming that a
and b will be uninitialized in the exception handler, we insert
operations to guarantee that a and b are uninitialized on entry
to the exception handler, regardless of the path taken. In the
above example, a discard (finalization) of a is inserted on the
path between the second call of f and the handler, and a
discard of a and b is inserted on the path between the third
call of f and the handler. The inserted operations are called
coercions.

Automatic finalization proved extremely practical when it
was implemented in Nil and Hermes. The use of coercions
was generalized to other kinds of finalization besides freeing
storage (e.g., closing open files). In these languages, dangling
references to memory cannot occur nor can programs termi-
nate without either freeing up or passing off resources they

. . .

own. Coercions give the run-time environment the option of
reclaiming memory eagerly rather than performing periodic
reclamation (garbage collection). In Nil and Hermes, the
determination of where to put coercions was made by the
same forward analysis algorithm used to check for typestate
correctness.

Backwards dataflow analysis can also be used to generate
coercions. In fact, using backwards analysis, we sometimes
finalize a variable at an earlier point in the program (thereby
freeing storage sooner). In what follows, we give the general
rules for how these finalizations could be generated. Some-
times it may be preferable not to finalize data structures earlier
(e.g., because the allocated structure can be reused or because
extra code may be required that slows the application). This
paper does not address the issue of when early finalizations
should be used.

Rvo situations give rise to coercions. The first situation
occurs whenever for some edge e =< p , s >, with pretypestate
1, and posttypestate l,, there exists a lower (less “dead” than
l,) typestate 1: such that fe(ZL) = 1,. In this case, we insert a
coercion operation C after p such that C has a posttypestate
of 1, and a pretypestate of l:.’

{ 4 1

{ l : 1
(1 s }

p: statement;

C

Here is the simplest example: Suppose there is a statement
print v with posttypestate v : false and pretypestate U :
true. That is, the variable v is not needed after it is printed.
The function associated with the print statement will map a
posttypestate of v : true to the same pretypestate of U : true.
Hence, by the rule given above, we insert a coercion (after
the print statement) with a pretypestate of v : true and a
posttypestate of v : f h e . We call this coercion discard w.
This guarantees that v will be finalized immediately after the
print statement.

What if the posttypestate were ‘U : a = 2? In that case, the
value of v will still be needed if a is 2, but will not be needed
if a is not 2, so the coercion is if a # 2 then discard
U . The tracking of conditional liveness enables us to finalize w
early whenever it is correct to do so. Using forward analysis,
in which initialization rather than liveness is tracked, w would
be finalized at some later point where the path merged with
some other path along which v was uninitialized.

The second situation in which coercions must be inserted
occurs when two (backwards) paths join and the meet of the
two typestates is taken. For example, suppose that on two
branches of an if statement, the typestates are ‘U : a = 2 A b =
3 and w : b = 3 A c = 4. Then the meet is w : b = 3. The
statement if (a # 2) A (b = 3) then discard v will be
generated on entry to the left branch, and the statement if
(c # 4) A (b = 3) then discard v will be generated
on entry to the right branch. (The code for finalizing w when
b = 3 will occur somewhere above the conditional when the

50ne way to understand this is as follows: since fe(Ib) = I , , the operation
does not cause I , to become uninitialized to I , , but only to I : . Hence, we
need to insert a code to perform the missing finalization.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:50 from IEEE Xplore. Restrictions apply.

STROM AND YELLIN EXTENDING TYPESTATE CHECKING 485

typestate for w goes from w : b = 3 to v : false.) Once again,
this assures that variable v will be finalized at an earlier point
than traditional (forward) typestate analysis.

Finalization coercions are often viewed as simply an opti-
mization which enables storage to be freed sooner. However,
conditional liveness can be extended to other cases in which
finalization has an actual semantic effect. For example, a
language could support variables of type file, with operations
open, read write, and close. The same analysis can be used
to guarantee that files are closed on program termination by
generating close statements at appropriate points.

Iv. FUTURE WORK AND CONCLUSION

A. Other Applications

The framework given in this paper is useful for checking
program correctness (that all variables referenced in a program
have been defined). It is equally useful for optimizing com-
pilers that make use of liveness information, as the technique
given in this paper will provide more precise information than
the traditional liveness algorithm.

It is possible to generalize the framework given here to
other applications as well. The common property of these
applications is that when a statement (e.g., p r i n t 2) is
encountered, an expectation is generated for what must precede
in order for the statement to be legal (e.g., an assignment to
2). Other types of statements could generate other types of
expectations which could be encoded as typestates and tracked
using a similar conditional analysis.

For example, suppose we wished to weaken the requirement
that the type of a variable z remains fixed throughout the
program. The variable could be, for example, a real in some
contexts and a string in others. At some places, it could even
be either real or string, depending on the value of variable
a. Without testing this tag, it would be illegal to perform
operations which assumed one or the other type. The properties
real and string become typestate properties rather than type
properties. Values of the lattice will have a form such as
<b = 0 + string(z);b # 0 + real(z)>.

B. Conclusion

Experience with Nil and Hermes has shown typestate check-
ing to be an extremely valuable tool for detecting errors,
generating finalizations, and assuring security in a program-
ming language.

To make typestate checking practical for languages like C,
stronger analysis techniques must be used to handle condi-
tional initialization. The techniques presented here provide the
needed extra strength without undue cost. They also suggest
potential useful generalizations to other dataflow analysis
problems.

REFERENCES

[l] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Twls.

[2] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation

Reading, MA: Addison-Wesley, 1986.

of fixpoints,” in Proc 4th ACM Symp. Principles of Programming
Languages, ACM, 1977, pp. 238-252.

131 P. R. Eggert, “Detecting software errors before execution,” Ph.D.
dissertation, UCLA, 1980.

[4] L. D. Fosdick and L. J. Osterweil, “Dataflow analysis in software
reliability,” ACM Computing Surveys, vol. 8, pp. 305-330, Sept. 1976.

[5] L. H. Holley and B. K. Rosen, “Qualified data flow problems,” IEEE
Trans. Sofhvare Eng., vol. SE-7, pp. 60-78, Jan. 1981.

[6] S. Horwitz, A. Demers, and T. Teitelbaum, “An efficient general
iterative algorithm for data flow analysis,” Acta Informatica, vol. 24,

[7] N. D. Jones and S. S. Muchnik, “Complexity of flow analysis, inductive
assertion synthesis and a language due to Dijkstra,” in Program Flow
Analysis: Theory and Practice. Enalewood Cliffs, NJ: Prentice-Hall,

pp. 679-694, 1987.

198i, pp. 38CL393.
[8] G. A. Kildall, “A unified approach to global program optimization,”

in Proc. Ist ACM Symp. Principles of Programming Languages, ACM,

-

- -
Oct. 1973, pp. 194-206.

[9] T. J. Marlowe and B. G. Ryder, “Properties of dataflow frameworks,”
4cta Infonnatica, vol. 28, pp. 121-163, 1990.

[lo] K. Olender and L. Osterweil, “Cecil: A sequencing constraint language
for automatic analysis generation,” IEEE Trans. Sofhvare Eng., vol. 16,
pp. 268-280, Mar. 1990.

[l l] R. Strom and S . Yemini, “Typestate: A programming language concept
for enhancing software reliability,” IEEE Trans. Sofhvare Eng., vol.

[12] R. E. Strom, “Mechanisms for compile-time enforcement of security,”
in Proc. loth ACM Symp. Principles of Programming Languages, ACM,
Ian. 1983.

[13] R. E. Strom, D. F. Bacon, A. Goldberg, A. Lowry, D. Yellin, and S. A.
Yemini, Hermes: A Language for Dlstrrbuted Computing. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

[14] R. E. Strom and D. M. Yellin, “Computationally tractable semilattices
for global data flow analysis,” Tech. Rep. RC 14936, IBM T. J. Watson
Res. Cen., Aug. 1989.

[15] R. E. Strom and S. A. Yemini, “NIL An integrated language and
:system for distributed programming,” in Proc. SIGPLA”83 Symp.
Programming Language Issues in Sofhvare Syst., June 1983.

[16] M. Wegman and F. K. Zadeck, “Constant propagation with conditional
branches,” ACM Trans. Programming Languages Syst., vol. 13, pp.
181-210, Apr. 1991.

SE-12, pp. 157-171, Jan. 1986.

Robert E. Strom completed undergraduate studies
at Harvard in 1966 and doctoral studies at Washing-
ton University in 1971.

Since 1977 he has been a Research Staff Mem-
ber at the IBM T.J. Watson Research Center. His
interests include programming languages, operat-
ing systems, distributed computing, fault-tolerant
computing, and end-user environments. He is a
member of the Distributed Systems Software Tech-
nology Group at IBM, which is developing a high-
level language-based platform for heterogeneous

distributed computing. He is the principal designer of the Hermes distributed
programming language.

Daniel M. Yellin (S’85-M’87) received the Ph.D.
degree in computer science from Columbia Univer-
sity in 1987.

Since 1987 he has been a Research Staff Member
at the IBM T.J. Watson Research Center in the Dis-
tributed Software Technology Group. His interests
include programming languages and environments,
distributed computing, algorithms, and data struc-
tures. He is an Editor of the International Standards
Organization (S O) standard on remote procedure
call.

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 21, 2008 at 09:50 from IEEE Xplore. Restrictions apply.

