
Optimal Polynomial-Time Interprocedural Register 
Allocation for High-Level Synthesis Using SSA Form 

  Philip Brisk Ajay K. Verma Paolo Ienne 

Processor Architecture Laboratory 
Swiss Federal Institute of Technology, Lausanne (EPFL) 

Lausanne, Switzerland 
{philip.brisk, ajaykumar.verma, paolo.ienne}@epfl.ch 

ABSTRACT 
An optimal, polynomial-time algorithm for interprocedural 
register allocation in high-level synthesis and ASIP design is 
presented. The algorithm determines the minimum number of 
registers required to store all scalar variables in an application 
without spilling any to memory. Although an optimal polynomial-
time algorithm has been presented in the past for individual 
procedures in Static Single Assignment (SSA) Form, this is the 
first such claim for the interprocedural analogue of the problem, 
which considers interferences across procedure calls. A new 
extension of SSA Form is introduced, and an example illustrates 
that this new representation can reduce the number of registers 
required for an optimal allocation. A secondary aspect of the 
optimal algorithm is that it is scalable: there is no need to build a 
complete interprocedural interference graph and each procedure 
can be colored individually. Our experiments show that the 
optimal algorithm runs more than 100× faster than a previously 
published scalable sub-optimal heuristic for the same problem.  

Categories and Subject Descriptors 
B.5.2 [Hardware]: Register-Transfer Level Implementation – 
automatic synthesis; optimization. 

General Terms 
Algorithms, Performance, Design. 

Keywords 
High-Level Synthesis, Register Allocation, SSA Form. 

1. INTRODUCTION 
Register allocation in the context of high-level synthesis (HLS) 
and application-specific (instruction-set) processor (ASIP) design 
is the problem of determining precisely how many registers are 
required for the system. Typically, register allocation is modeled 
as a graph coloring problem. An interference graph G = (V, E) is 
constructed, where each vertex v∈V represents a variable, and an 
edge (x, y) is added to E if the lifetimes of x and y overlap. Two 
such interfering variables cannot share the same storage location. 

A subset S⊆ V of variables can share the same register if and 
only if S is an independent set, i.e. the vertices in S are pairwise 
non-adjacent. The goal of the minimum coloring problem is to 
partition V into the minimum number of non-overlapping 
independent sets. In the context of coloring, all of the vertices 
belonging to the same independent set are assigned an integer 
value, called a color, and each independent set is called a color 
class.  

If there are k independent sets, then colors 1..k are assigned to the 
vertices in each color class. A register is allocated to the system 
for each color class, and each variable assigned to the ith color 
assign is then bound to the ith register. 

Although graph coloring is NP-Complete, there are many classes 
of graphs for which the coloring problem can be solved optimally 
in polynomial-time. In particular, this paper focuses on the class 
of chordal graphs, which can be colored optimally in O(|V| + |E|) 
time using a greedy algorithm by Gavril [10]. The method 
proposed in this paper ensures that the interprocedural 
interference graph is a chordal graph, and a method is presented 
that colors each procedure optimally and individually. 

The key to the success of the algorithm presented in this paper is a 
novel interprocedural program representation that extends Static 
Single Assignment (SSA) Form; the new representation is called 
SSA Form with Launch and Landing Pads (SSA-LLP). SSA-LLP 
Form pre-allocates the minimum number of caller-save registers 
to the design to hold all of the variables that are live across every 
procedure call point in the program; by copying variables to and 
from these registers before and after each call, SSA-LLP form 
ensures that no variables defined locally in two separate 
procedures interfere with one another, while ensuring that the 
interprocedural interference graph is chordal.  

The color assignment procedure outlined here is scalable. It does 
not require the construction of a complete interprocedural 
interference graph, and the interference graph for each procedure 
can be colored individually. It runs more than 100× faster than a 
previously-published scalable sub-optimal heuristic [1]. 

2. RELATED WORK 
2.1 Register Allocation 
Techniques for register allocation in high-level synthesis have 
developed over the years as the granularity of the application 
being synthesized has increased. In the mid-1980s, the typical 
application was a dataflow graph (DFG) whose operations had 
already been scheduled and bound to resources. A DFG can 
represent an acyclic program—via if-conversion, it can handle 
conditions, but it cannot represent loops. In 1986, Tseng and 
Siewiorek [26] formulated register allocation as a clique 
partitioning problem on a compatibility graph, the inverse of an 
interference graph; a sub-optimal heuristic was presented. In 
1987, Kurdahi and Parker [17] showed that the interference graph 
for a DFG was an interval graph that could be colored optimally 
using the Left Edge Algorithm [28], originally developed by 
Hashimoto and Stevens [14] for channel routing. Springer and 
Thomas [21] showed that interference graphs are chordal if 
restrictions are placed on variable lifetimes and procedure calls.  



A cyclic DFG  has feedback edges and can thus represent loops. 
Stok [23] showed that an interference graph for a scheduled cyclic 
DFG is a circular arc graph, for which coloring is NP-Complete.  

In 2005 and 2006, Bouchez et al. [2], Brisk et al. [5], and Hack 
and Goos [12] independently proved that an interference graph for 
a program represented in SSA Form is a chordal graph. In short, 
SSA Form imposes the same restrictions on variable lifetimes that 
were noted by Springer and Thomas a decade earlier.  

Vemuri et al. [27] were the first to study interprocedural register 
allocation for high-level synthesis. They built an interprocedural 
interference graph (IIG), which includes both local interferences 
as well as global interferences across procedure calls. Beidas and 
Zhu [1] developed a scalable algorithm using a technique called 
Color Palette Propagation (CPP) that avoided building a 
complete IIG and colored each procedure individually. Top-down 
and bottom-up CPP techniques propagated interferences across 
procedure call boundaries. Their results were comparable to 
Vemuri et al. with a runtime that was 100× faster. Both of these 
techniques are heuristics that cannot claim optimality.  

There has been considerable work on register allocation in 
compilers (e.g. [4, 6])—far too much to enumerate here. Since the 
number of registers in the target architecture is fixed, the primary 
goal of such allocators is to minimize the cost of spilling variables 
to memory; a secondary goal is to assign registers to eliminate as 
many copies as possible. Computing a minimal coloring of an 
interference graph does not suffice to solve these problems.  

Relevant to this work, however, is interprocedural register 
allocation in compilers [7, 22]. Many RISC architectures dedicate 
certain registers as caller-save and callee-save, and the goal of 
such allocators is to minimize the cost of saving and restoring 
variables at procedure call and return points. The SSA-LLP 
representation effectively preallocates a sufficient number of 
caller-save registers to handle all the variables that are live across 
each call point in the application, including every possible 
transitive sequence of calls. This will be described in greater 
detail in Section 4.  

2.2 Chordal Graphs 
Let G = (V, E) be an undirected graph. A cycle is a set of vertices 
{v0,v1, …, vj} in the graph, such that there is an edge (vi, v(i+1) mod j) 
for i = 0, 1, …, j. A chord is an edge (vs, vt) that is not part of the 
cycle, i.e. t ≠ (s+1) mod j. A chordless cycle (hole) [8] is a cycle 
of length at least 4 that does not contain a chord (note that a cycle 
of length 3 is a clique, and a cycle of length 2 is simply an edge 
between a pair of vertices). A chordal graph is defined to be any 
graph that contains no chordless cycles of length 4 or more.  

For v∈V, N(v) is the set of vertices adjacent to v. An Elimination 
Order (EO) is a function σ that assigns a unique number from the 
set set {1, .., |V|} to each vertex. Given an EO, vertices are named 
such that σ(vi) = i. Let Vi = {vj | j < i}, and Gi = (Vi, Ei) be the 
subgraph of G induced by Vi; G0 is the empty graph, and Ni(vj) = 
{vk∈N(vj) | k < i}. In other words, Ni(vj) contains all vertices 
adjacent to vj that occur before vj in the EO. 

In a graph G, vertex v is defined to be simplical if N(v) is a clique. 
A Perfect Elimination Order (PEO) is an EO such that vi is 
simplical in Gi, i.e. that Ni(vi) is a clique, for each vertex vi∈V. 
An equivalent definition of a chordal graph is any graph that has a 

PEO. A PEO [25] and an optimal color assignment [10] can both 
be computed in O(|V| + |E|) time for chordal graphs. 

2.3 Compiler Preliminaries 
To conserve space, we assume that the reader is familiar with 
compiler concepts such as the Control Flow Graph, Liveness 
Analysis, and how to construct an interference graph; if not, a 
compiler textbook (e.g. [9]) should be consulted. Although this 
paper extends Static Single Assignment (SSA) Form, the reader 
does not need to understand the details; the paper by Briggs et al. 
[3] is probably the most accessible reference on SSA Form.  

2.3.1 The Interprocedural Interference Graph 
Two variables interfere if they are both live at some point in an 
application. Local interferences are between two variables in the 
same procedure, and they can easily be detected using liveness 
analysis [9]. Global interferences are interferences between 
variables across procedure calls. For example: 

 X ← … 
 CALL A     (1) 

 … ← X 
For simplicity, assume that X is not a parameter passed to A and 
that there are no recursive function calls. X globally interferes 
with every variable defined locally in A; Beidas and Zhu [1] call 
these immediate global conflicts. X will also transitively interfere 
with all local variable defined in any procedure that could be 
called before A terminates. Beidas and Zhu call these transitive 
interferences global conflicts. We do not distinguish between 
immediate and non-immediate global conflicts. 

An Interprocedural Interference Graph (IIG) is an undirected 
graph G =  (V, E), where there is a vertex in V for every variable 
in the program, and an edge (x, y) is placed between ever pair of 
variables x and y that interfere locally or globally. Any legal 
coloring of G is a legal solution to the interprocedural register 
allocation problem for synthesis. 

2.3.2 The Call-Points Graph 
Let P be the procedures in an program, and C be the set of points 
in the program where one procedure calls another. We assume 
that all calls are direct, i.e. there are no function pointers. This 
ensures that only one procedure is called from each call point.  

The Call-Points Graph (CPG) is a directed graph, GCPG = (VCPG, 
ECPG), where VCPG = P∪ C. Let ck∈C be a point where Pi calls 
procedure Pj. Then edges (Pi, ck) and (ck, Pj) are added to ECPG. 
This ensures that each call point has exact one predecessor (the 
caller) and one successor (the callee) in the CPG. We assume that 
P1 is the entry procedure of the program (typically called main in 
languages like C/C++), and that P1 is the only node in the CPG 
with no predecessors. An example CPG is shown in Fig. 1. 

A cycle in the CPG represents a (set of mutually) recursive 
function(s). Clearly, no variable can reside in a register across a 
mutually recursive function call. Otherwise, the first recursive call 
to the same function will overwrite the variable’s value. The only 
way to store variables across function calls is to push them onto a 
runtime stack, which is exactly what software compilers do. The 
same must be done for hardware synthesis; or alternatively, 
recursive function calls cannot be supported. 



 
For the purpose of register allocation, it suffices to eliminate 
recursive function calls from the CPG since locally defined 
variables will reside in memory across these call points. It suffices 
to compute the strongly connected components (SCCs) [24] of the 
CPG, and collapse each SCC into a single node. The result is 
called the Augmented Components Graph in graph theoretic 
literature. Throughout the remainder of this paper, we can thus 
assume that the CPG is acyclic to simplify the discussion. 

3. GLOBAL INTERFERENCES 
In interprocedural register allocation, we must determine how 
many registers are necessary to store variables that are live across 
each call on each path through the CPG. Let Pi be a procedure 
with interference graph Gi = (Vi, Ei), and let the chromatic 
number of Gi be χi = χ(Gi). If δi is the number of global 
interferences between Pi and local variables defined within its 
ancestors in the CPG, then δi + χi registers are needed for Pi. If Pi 
is represented in SSA Form, then Gi is chordal and χi is computed 
efficiently. Here, we describe how to compute δi efficiently as 
well. 

Let ck be a call point in the CPG where Pi calls Pj. Let L(ck) be the 
set of local variables in Pi that are live across ck. Let T = (P1, P2, 
…,  Pj)  be a path in the CPG from P1 to Pj. To simplify notation, 
let C = {c1, …, ck-1} be the call points along this path. Then 
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The total number of registers required to store variables along this 
particular path is |L(T)|. One approach to computing δj would be 
to enumerate every possible path from P1 to Pj and select the 
largest L-value among all of these paths; however, there are an 
exponential number of unique paths in a DAG in the worst-case.  

We can compute δj in O(|VCPG| + |ECPG|) time by processing the 
basic blocks of the CPG in topological order. First, let us redefine 
δ as a function δ: VCPG → {0, 1, … }; we use the notation δj in 
place of δ(Pj) for brevity. For a procedure Pj, δj is defined as 
described above; δ1 = 0, since there are no variables live across 
the entry procedure. For a call point ck where Pi calls Pj, δk = δi + 
|L(ck)|.  

 
For procedure Pi, let Ci be the set of call points that call Pi. Since 
vertices are processed in topological order, δi is known before we 
compute δk for each call point ck∈Ci. Then 
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The correctness of this algorithm follows from the fact that the 
CPG is acyclic and the vertices are processed in topological order; 
a formal proof is omitted to save space. An example, 
corresponding to Fig. 1, is shown in Table 1 above. 

4. LAUNCH AND LANDING PADS 
In this section, we present a new program representation that 
ensures that the IIG is a chordal graph. The initial step is to 
compute δi for each procedure Pi as described in the preceding 
section. Let δmax = max{δ1, …, δN}, N = |VAC-CPG|. δmax is the 
number of registers required to hold variables that are live across 
procedure calls and are involved in global interferences. A leaf is 
a procedure with no successors in the CPG. Clearly, δmax 
corresponds to an δi-value for a leaf, although there may be non-
leaf procedures whose δi-values are equal to δmax. 

Next, we allocate M = δmax global registers T = {T1, …, TM} to 
hold these values. Now, consider procedure Pi. We assume that 
prior to calling Pi then m = δi variables that are live at the point 
where Pi is called reside in registers T1, … Tm. Now, consider a 
call point ck where Pi calls Pj. At the call point, we have an 
additional n = δk - δi variables that are live across the call.  These 
variables are stored in registers Tm+1, …, Tm+n.  

In general, we cannot assume that the color assignment phase can 
and/or will be able to assign these variables to the desired 
registers. To make this assignment feasible, we introduce parallel 
copy instructions—called Launch and Landing Pads before and 
after each call instruction respectively. Launch pads copy the 
variables in L(ck) to global registers Tm+1, …, Tm+n, and landing 
pads copy them back to their original registers. Ψ denotes a 
launch pad and Ψ-1 denotes a landing pad. Both Ψ and Ψ-1 are 
parallel copy operations, similar in principle to ϕ-functions in 
SSA Form [12]. A procedure call augmented with launch and 
landing pads would have the following form: 

(Tm+1, …, Tm+n) ← Ψ(L(ck)) 
 Call Pj     (3) 

 (L(ck)) ← Ψ-1(Tm+1, …, Tm+n). 

Call Point |L(ci)| δi Procedure δi 
P1 
P2 
P3 
P4 
P5 
P6 

0 
2 
3 
2 
6 
5 

c7 
c8 
c9 
c10 
c11 
c12 
c13 
c14 

1 
2 
3 
2 
5 
3 
3 
2 

1 
2 
3 
2 
5 
5 
6 
4 

  
  

Table 1.  
Example of the δi values for the CPG in Fig. 1 using the 

|L(ci)| values provided in the second column. 

P1 

c7 c8 c9 c10 c11 

P2 P3 P4 

P6 c14 c12 c13 P5 

Figure 1. An example CPG. 



Launch and landing pads eliminate all interferences between 
variables defined locally in separate procedures. Global 
interferences are now between a variable assigned to a register in 
T and a variable defined locally in another procedure further 
down the call chain.  

Any instruction of the form y ← … defines variable y. One of the 
defining features of SSA Form is that variables are defined 
exactly once [3]. SSA Form with Launch and Landing Pads (SSA-
LLP) relaxes this constraint. For example, each variable in L(ck) is 
now defined multiple times: once at the original definition point, 
and now once by a landing pad. This is not problematic, however, 
as the LLP extension to SSA is only required for register 
allocation. The launch and landing pads do not need to be inserted 
prior to register allocation. Thus, any other SSA-based 
optimization or analysis can be applied without concern. 
Alternatively, the representation can treat the launch pad, call 
instruction, and landing pad as one atomic operation that is not 
exposed to the optimizer; this hides both the re-definition of 
variables and the use of the global registers in T.  
There is a distinct similarity between the launch and landing pads 
and caller-save registers [7, 22] used for interprocedural register 
allocation in compilers. Specifically, all registers, except those in 
T, are caller-save, in this context, and the registers in T receive the 
values immediate prior to the call. In a typical compiler, the 
variables would be pushed and popped onto the stack frame rather 
than copied to and from registers in T.  

4.1 Example 
Fig. 2 shows an example that illustrates how SSA-LLP Form can 
reduce the chromatic number of an IIG. Fig. 2 (a) shows a short 
program containing two functions, A and B, both of which satisfy 
the criteria for SSA Form. Fig. 2 (b) shows procedure A converted 
to SSA-LLP Form; procedure B calls no functions, so it needs no 
launch or landing pads. The respective IIGs are shown in Fig. 2 
(c) and (d) respectively.  

The IIG in Fig. 2 (c) is a well-known graph called a 5-hole [8]. 
First and foremost, this graph is not chordal because it contains a 
chordless cycle. Second, the 5-hole is well-known because it is 
the smallest imperfect graph, i.e. one whose chromatic number is 
larger than the cardinality of its maximal clique. The largest 
clique contains 2 vertices, but its chromatic number is 3.  

After converting procedure A to SSA-LLP form, the resulting IIG 
is shown in Fig. 2 (d). This interference graph is chordal; since all 
chordal graphs are perfect graphs, the chromatic number is equal 
to the maximal clique; here, both values are 2. Fig. 2 illustrates 
that converting from SSA Form to SSA-LLP Form can reduce the 
chromatic number of the IIG, and thus the number of registers 
allocated to the datapath (HLS) or ASIP register file. 

5. CHARACTERIZING THE IIG 
Lemmas 1 and 2 and Corollaries 1 and 2, which follow, allow us 
to characterize an IIG for an application in SSA-LLP Form. Let 
the set of procedures be P = {P1, …, Pk} and T = {T1, …, TM} be 
the set of global registers. For each procedure Pi, let Gi = (Vi, Ei) 
be its local interference graph. The In Lemma 1 and Corollary 1, 
which follow, Pi and Pj are distinct procedures, i.e. i ≠ j, in SSA-
LLP Form; a few proofs are omitted to conserve space. 

 

 
Lemma 1. No variable vi defined locally in Pi interferes with a 
variable vj defined locally in Pj.  

 
Corollary 1. No variable defined in procedure P1 = main can be 
involved in a global interference in an SSA-LLP form application. 
 
In an IIG, the global registers are T = {T1, …, TM}. GT = (T, ET) is 
the induced subgraph of the IIG containing variables in T. Lemma 
2 follows from the fact that δmax = M, and that the variables 
involved in global interferences are stored in T.  

 
Lemma 2.  T = {T1, …, TM} forms a clique in the IIG. 

 

Corollary 2. Any EO σ(T) is a PEO of GT.  
 
When procedure Pi is called, m = δi variables reside in global 
registers T1, …, Tm, as discussed in Section 4. The purpose of the 
launch and landing pads is to ensure that these variables are 
assigned to this specific set of registers. Each global register Tj, 
where 1 < j < m, interferes globally with every variable defined 
locally in Pi, e.g. the set Vi; likewise, no global register, Tj, where 
m+1 < j < M, interferes with any variable in Vi. The set of global 
interferences involving local variables in Pi is denoted E(T, i). 
The IIG, G* = (V*, E*), is defined as follows: 
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Procedure: A 

V ← … 
Call B 
W ← … 
… ← V 
X ← … 
… ← W 
Y ← … 
… ← X 
Call B 
… ← Y 
 

Procedure: B 

Z ← … 
… ← Z 

V W

Z 

Y 

Figure 2. A small SSA-Form program (a) converted to 
SSA-LLP Form (b) and respective IIGs (c) and (d). 

(a) (b) 

T1 

Procedure: A 

V ← … 
T1 ← Ψ(V) 
Call B 
V ← Ψ-1(T1) 
W ← … 
… ← V 
X ← … 
… ← W 
Y ← … 
… ← X 
T1 ← Ψ(Y) 
Call B 
Y ← Ψ-1(T1) 
… ← Y 

X 

(c) 

V 

W X 

Y 

Z 

(d) 



 
  

Fig. 3 shows the IIG for the application shown in Fig. 1 with the 
|L(ci)| and δi values taken from Table 1. Local interferences are 
not shown. Since the application is in SSA-LLP Form, each 
subgraph Gi is a chordal graph. Many of the clique edges in ET are 
not shown in order to make the illustration easier to follow. 

5.1 THE IIG is Chordal 
Here, we prove that an IIG for an application in SSA-LLP Form is 
a chordal graph. Lemma 3 describes how to build an IIG for a 
procedure that includes a global interference at the call point.  
 

Lemma 3. Consider a procedure P in SSA Form with (chordal) 
interference graph G = (V, E) and let v be a variable that is live 
across a call to P. Then the graph G’ = (V’, E’) induced by V’ = 
V∪ {v} is chordal.  

Proof. Consider vertex vi∈V. Since G is chordal G has a PEO. vi 
is simplical in subgraph Gi = (Vi, Ei) induced by Vi = {v1, …, vi}. 
In other words, Ni(vi) is a clique.  
Now, let Vi’ = Vi∪ {v} and let Ni’(vi) be the set of neighbors of vi 
in Vi’. If V0’ = {v}, v is simplical in V0’. Since v interferes with 
every variable in V, it follows that Ni’(vi) = Ni(vi)∪ {v} is a 
clique for i > 0. Therefore vi is simplical in Gi’. � 
 

Corollary 3. Let T be a set of variables that are live across a call 
to procedure P with chordal interference graph G = (V, E). Then 
the subgraph G’ = (V’, E’) induced by V’ = V ∪ T is chordal. 
 

Let ○: α × α → α, be an operator that concatenates two EOs; 
e.g.: α(X) ○ α(Y) = α(X)α(Y) = α(XY), where XY is the union of 
vertex sets X and Y (including all edges connecting a vertex in X 
to a vertex in Y. When implicit, e.g.: α(X)α(Y), ○ may be omitted.  

Let α(G*) = σ(T)σ(G1)σ(G2)… σ(Gk) be an EO of G*. σ(T) and 
each σ(Gi) term is a PEO. In the remainder of this section, we 
prove that α(G*) is a PEO.  

Consider a vertex v∈V*. Let N*(v) be the set of vertices adjacent 
to v in G*. If α(v) = i, then let Ni*(v) be the set of vertices 
adjacent to v that precede v in α(G*).  
 

Theorem 1. α(G*) is a PEO of G*. 

Proof. Assume to the contrary that α(G*) is not a PEO of G*. 
Then there is some vertex v∈V such that Ni*(v) is not a clique.  
If v∈T, let v = Tj. So Ni*(v) = {T1, …, Tj-1}. Observe that all 
vertices in T precede all others in α by construction. Therefore the 
subgraph of G* induced by Ni*(Tj) is not a clique, which 
contradicts Lemma 2.  
Otherwise, let v∈Vi for some interference graph Gj = (Vj, Ej) that 
corresponds to procedure Pj. First, note that Gj is a chordal graph 
since Pj is a procedure in SSA Form. Let Uj be the subset of 
vertices of Vj that precede v in σ(Gj) and thus precede v in α(G*). 
Since Gj is chordal and σ(Gj) is a PEO of Gj, it follows that v is 
simplical in the subgraph of Gj induced by Uj.   
Let x, y∈Ni*(v) be two non-adjacent vertices.  
(1) By the reasoning above, both x and y cannot belong to Uj. This 
would contradict the fact that σ(Gi) is a PEO of Gi. 
(2) Neither x nor y can be defined locally in some procedure other 
than Gj. Since they interfere with v, which is defined locally in Gj, 
this would contradict Lemma 1, which states that two variables 
defined locally in different procedures cannot interfere.  
(3) Both x and y cannot belong to T. Since they do not interfere, 
this would contradict Lemma 2 which states that T is a clique. 
(4) By (1)-(3), it follows, without loss of generality, that x∈T and 
y∈Vi. Since x∈Ni(v) and x∈T , the interference between x and v 
is global. Therefore x is live across the call to procedure Pi. By 
Corollary 3, x interferes with every variable defined locally in Gj, 
which includes y, contradicting the fact that x and y do not 
interfere. 

Therefore α(G*) is a PEO of G*. � 
 

Corollary 4. G* is a chordal graph.  
 

Henceforth, α(G*) will be replaced with σ(G*) since α(G*) is a 
PEO of G*. σ represents a PEO, whereas α represents any EO. 

6. COLORING THE IIG 
In this section, we present an efficient algorithm to color the IIG. 
We prove that the algorithm is optimal and derive its time 
complexity. Like the algorithm of Beidas and Zhu [1], we do not 
construct the complete IIG. This ensures that the algorithm is not 
only optimal, but practical.  

Since σ(G*) can be constructed deterministically, as long as we 
have pre-computed PEOs of each individual procedure as well as 
σ(T), we focus solely on using this specific PEO.   

 Let R = max{δ1 + χ1, …, δn + χn}, where χI is the chromatic 
number of interference graph Gi for procedure Pi. Let χ(G*) be 
the chromatic number of G*, the IIG. 

 

Theorem 2. χ(G*) = R. 

Figure 3. The IIG for the application depicted in Fig. 1 
with |L(ci)| and δi values taken from Table 1.

G2 G3 
 G4 

 G5 
 G6 

 

T1 T2 T3 T4 T5 T6 

δ2 = 2 δ3 = 3 δ4 = 2 δ5 = 6 δ6 = 5 

 

CLIQUE

G1 
 δ1 = 0 

Global interference  
Tj interferes with each 
local variable in Gi 



Proof. Without loss of generality, let R = δi + χi. Since there is at 
least one path from P1 to Pi along which δi global variables are 
defined across the call to Pi, R > δi + χi. Hence, δi variables 
already reside in registers before calling Pi and at most χi 
variables are simultaneously live in Pi.  Therefore χ(G*) > R. 

Let ω(G*) be the cardinality of the largest clique in G*. Since all 
chordal graphs are perfect graphs [8], χ(G*) = ω(G*). We must 
show that no clique C exists in G* such that |C| > R. Assume to 
the contrary that some clique C does exist in G* such that |C| > R.  

Let V(δj + χj) be a subset of vertices of G* containing the first δj 
vertices in T (i.e. if m = δj, then T1…Tm are the first m vertices) 
and a subset of χj vertices in Vi that form a maximal clique in Gj. 
V(δj + χj) is a clique by Lemma 3 and Corollary 3. Since R = δi + 
χi, then every clique V(δj + χj) must satisfy |V(δj + χj)| < R; the 
contrary would contradict the fact that R is maximal taken across 
every procedure.  
Since C > R, it follows that C must have some extra vertices from 
somewhere. There are two possible locations for extra vertices. If 
C includes vertices from Tm+1…Tn, n = |T|, then C is not a clique 
because none of these vertices interfere with any variables defined 
locally in Pi. Therefore, the extra vertices must come from some 
procedure Pj, j ≠ i. Since C is a clique, these extra variables must 
interfere with the variables defined locally in Pi, which 
contradicts   Lemma 1. Therefore, |C| = χ(G*) < R. Since we 
have already shown that χ(G*) > R, it follows that χ(G*) = R. � 
 

Now that we have established that the IIG is chordal, we focus on 
coloring it optimally. For vertex v∈Vi, let color(v) be the color 
assigned to v when Gi is colored optimally and color*(v) be the 
color assigned to v when G* is colored. In other words, color(v) is 
the color assigned to v if Gi was colored separately, outside of the 
context of interprocedural register allocation. color*(v) is a color 
that could be assigned to v by optimally coloring [10] the 
complete IIG. By relating color*(v) to color(v), Theorem 3, which 
follows, effectively describes an optimal algorithm for coloring 
the IIG that simply colors each procedure individually. There is 
no need to construct the complete IIG, which makes this 
algorithm scalable like the CPP heuristic of Beidas and Zhu [1]. 
 

Theorem 3. color*(v) = color(v) + δi is a legal color assignment 
for each variable v defined locally in procedure Pi.  

Proof. For each Ti∈T, let color(Ti) = i. Since T is a clique 
(Lemma 2), |T| colors are needed to color T.  
Now, consider procedure Pi with interference graph Gi = (Vi, Ei). 
Let v∈Vi and let σ(v) = j, i.e. v is the jth

 vertex in the PEO for Gi. 
The proof is achieved using induction on j.  
If j = 0, then color(v) = 1 by Gavril’s algorithm [10]. In G*, 
Nj*(v) = {T1, …, Tm}, where m = δi, by Lemma 2 and Corollaries 
2 and 3. Therefore the first available color for v is 1 + δi. 
Therefore color*(v) = color(v) + δi. 
For the induction, suppose that for j < k, every vertex v such that 
σ(v) = j satisfies color*(v) = color(v) + δi. Now let v be the vertex 
in Vi such that σ(v) = k. If Ni(v) is empty, then color(v) = 1 using 
the same reasoning as the basis, and color*(v) = 1 + δi = color(v) 
+ δi. Otherwise, for each color c, 1 < c < color(v), there must 

some vertex u∈Ni(v) such that color(u) = c. Since σ(v) < k, it 
follows that color*(u) = c + δi = color(u) + δi. Therefore colors 
m+1…c are not available for v. Since {T1, …, Tm}∈Ni*(v), it 
follows that colors 1..m are not available for v either. Therefore 
the first color available for v is color*(v) = color(v) + δi. � 
 
By Theorem 3, the vertices in G* can be colored by first 
assigning colors 1..|T| to the vertices in T, and then coloring the 
chordal interference graph for each procedure Pi using the 
standard algorithm for chordal coloring. G* is never built.  

6.1 Time Complexity 
We analyze the time complexity of coloring the IIG as described 
in the proof of Theorem 3; Theorem 4 states the result. 
 

Theorem 4. The time complexity, S(G*), of coloring G* is 
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Proof. The time to assign colors 1..|T| to each variable in |T| is 
O(|T|). The time to apply chordal coloring to the interference 
graph Gi for procedure Pi is O(|Vi| + |Ei|). �  
 
The complexity of coloring the complete IIG using Gavril’s 
algorithm is S’(G*) = O(|V*| + |E*|). S’(G*) includes two extra 
terms: |ET| = ½|T|(|T|-1) = O(|T|2) and |E(T, i)| = δi|Vi|. Thus 
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6.1.1 Further Discussion 
The time complexity described above only includes the cost of 
computing a coloring. There are several terms whose 
contributions have not been taken into account for brevity.  
The first omitted term is the complexity of computing the CPG. 
This requires a linear traversal of the instructions in each 
procedure in order to find the call points. When Pi calls Pj, one 
vertex (a call point ck) and two edges, (Pi, ck) and (ck, Pj) are 
added to the CPG. If there are k procedures, the cost of finding Pj 
in a list is O(k). If I is the total number of instructions in the 
application (across all procedures) and there are C call points, the 
time complexity becomes O(|I| + |C|k).  
The cost of looking up Pj can be reduced to near-constant by 
using a hash table. In the worst case, all procedures hash to the 
same bucket and the cost per-lookup is still O(k). In the average-
case, this cost can be mitigated by using a good hash function and 
allocating a table with a sufficient number of buckets. 
The second and third omitted terms are the cost of computing the 
SCCs of the CPG to eliminate recursive procedure calls and the 
cost of computing the δi-values; both are O(|VCPG| + |ECPG|).  
The last omitted term is the cost of performing liveness analysis 
and building the interference graph for each procedure. The 
algorithms used for these procedures can be found in any 
compiler textbook (e.g. [9]). It is well-known that liveness 
analysis, in particular, is quite costly in practice. 



7. EXPERIMENTAL RESULTS 
We implemented the optimal interprocedural register allocation 
algorithm into the Machine SUIF compiler framework [20] and 
compared our results to the color palette propagation (CPP) 
heuristic of Beidas and Zhu [1]. Beidas and Zhu described two 
different approaches to color propagation: top-down, and bottom-
up. To color each procedure individually, they use Chaitin’s 
heuristic [6], taken from register allocation in compilers; however, 
this heuristic actually dates back to the work of A. B. Kempe in 
1879 [15]. An improvement to Kempe’s heuristic was proposed in 
1983 by Matula and Beck [19], and this heuristic later became the 
basis for the optimistic allocator developed by Briggs [4] (and 
subsequently enhanced and improved by many others).  

We compare the optimal solution using SSA-LLP form presented 
here to both the top-down and bottom-up CPP approaches using 
Matula and Beck’s coloring heuristic. For the CPP heuristic, we 
represented each procedure as a Control Flow Graph (CFG), as 
was done by Beidas and Zhu [1]; for the optimal heuristic, we 
represented the complete application in SSA-LLP Form.  

For our benchmarks, we selected a set of embedded applications 
from Mediabench [18] and MiBench [11]. The number of 
registers allocated is shown in Table 2 and the runtime is shown 
in Table 3. Since the algorithm presented here is optimal, the two 
heuristics can do no better. 

From Table 2, we see that the bottom-up heuristic never allocates 
more registers than the top-down heuristic, and in many cases, it 
allocates significantly fewer. In many cases, the bottom-up 
heuristic does allocate the same number of registers as the optimal 
algorithm; however, this is purely coincidental.  

It should be noted that the optimal algorithm can be viewed as a 
specific implementation of top-down propagation using SSA-LLP 
form; the only colors that are propagated downward are the global 
registers, which have been pre-allocated and pre-colored. The 
computation of δi-values does most of this work. For procedure 
Pi, colors 1 through δi are propagated; Gi is then colored optimally 
using Gavril’s algorithm [10], but with δi+1 rather than 1 as the 
first available color.  

 

 
The experiments were performed on a laptop PC with a 2.00 GHz 
Intel Pentium M processor with 1.00 Gigabytes of RAM running 
Fedora Linux. From Table 3, the optimal algorithm actually runs 
much faster than either the top-down or bottom-up heuristics. On 
average, we observed a speedup of 128× for the optimal algorithm 
compared to top-down CPP and 121× compared to bottom-up 
CPP. The complexity of the Matula and Beck heuristic is O(|V|2); 
whereas that of chordal coloring is O(|V| + |E|). The complexity 
of both top-down and bottom-up CPP includes the cost of 
coloring each interference graph as well as the cost of propagating 
the palette; the interested reader should refer to the paper by 
Beidas and Zhu [1] for details. 

As demonstrated by the experiments presented here, the optimal 
algorithm is significantly faster than either top-down or bottom-
up CPP, which were the fastest heuristics for interprocedural 
register allocation in synthesis that have been published to date. 
Admittedly, the CPP heuristics are agnostic about how to 
represent each procedure (e.g. CFG vs. SSA Form) and which 
heuristic should be used to color each procedure individually. In 
principle, one might be able to do better than the results shown 
here for top-down and bottom-up CPP by representing each 
procedure in SSA Form (but not SSA-LLP) and coloring each 
procedure optimally using chordal coloring rather than the Matula 
and Beck heuristic. We have not done so, however, because the 
algorithm presented here is already optimal and fast, and thus, 
there is no need to explore further sub-optimal alternatives. 

8. CONCLUSION AND FUTURE WORK 
An optimal polynomial-time algorithm for interprocedural register 
allocation in the context of HLS and ASIP design has been 
presented. To the best of our knowledge, this is the first non-
trivial interprocedural problem in HLS for which a polynomial-
time solution has been found. Experimentally, we have found that 
the optimal algorithm is more than 100× faster than the  top-down 
and bottom-up CPP heuristics of Beidas and Zhu [1], which are 
the state-of-the-art at the present. 

Benchmark Top Down Bottom-Up Optimal 
adpcm_decoder 
adpcm_encoder 
blowfish 
crc32 
dijkstra_large 
dijkstra_small 
fft 
g721_decoder 
g721_encoder 
gsm 
mpeg2_decoder 
mpeg2_encoder 
patricia 
pegwit 
sha 
susan 

0.136 
0.177 

8.06 
0.517 
0.113 
0.113 
0.486 

1.93 
2.8 

9.55 
9.65 

28.957 
0.446 
288.2 
0.425 

66.222 

0.125 
0.153 

6.75 
0.421 

0.0886 
0.088 
0.446 

1.45 
1.47 
9.44 
9.02 

28.824 
0.396 
271.7 
0.385 
63.51 

0.00994 
0.047 
0.136 

0.00518 
0.0408 
0.0372 

0.507 
0.064 

0.0709 
0.289 
0.407 
0.645 

0.0531 
0.0585 

0.573 
0.324 

Total 
Average 

418 
26.1 

394 
24.6 

3.27 
0.204 

Table 3.  
Runtime (seconds) 

Benchmark Top Down Bottom-Up Optimal 
adpcm_decoder 
adpcm_encoder 
blowfish 
crc32 
dijkstra_large 
dijkstra_small 
fft 
g721_decoder 
g721_encoder 
gsm 
mpeg2_decoder 
mpeg2_encoder 
patricia 
pegwit 
sha 
susan 

23 
22 
22 
16 
10 
10 
22 
41 
32 
35 
62 

112 
28 
41 
21 
36 

15 
15 
20 
12 
10 
10 
21 
26 
22 
31 
48 
94 
13 
33 
18 
23 

15 
15 
20 
11 
9 
9 

20 
25 
22 
31 
47 
91 
13 
32 
18 
23 

Table 2.  
Number of Registers Allocated. 



We envision several avenues for future work. One extension 
involves integrating register assignment with operation and 
connectivity binding to minimize the cost of multiplexers and 
wires inserted into the design; this problem is NP-Complete, even 
for chordal interference graphs. Another possibility is to explore 
SSA-LLP form for interprocedural register allocation in 
compilers. Current work on interprocedural register allocation 
does not use SSA Form, and only one SSA-based allocator has 
been published to date [13].  

The discussion in this paper has omitted a few aspects of the C 
language, such as function pointers. A function pointer allows a 
call point to call multiple functions. This can easily be handled by 
the technique presented in this paper. The problem, however, is 
that pointer analysis [15] is undecidable in the general case. We 
rewrote the g721 and gsm applications so that we could compile 
them without function pointers. Due to the widespread use of 
function pointers, we were unable to compile jpeg. 

This paper has not addressed static variables, which can reside in 
registers across recursive function calls. Static variables are 
defined only the first time that a function is called; subsequent 
calls skip over the definition, similar in principle to predicated 
execution. Once initialized, a static variable remains live until 
either the program terminates or execution reaches a place at 
which the function containing the static variable can no longer be 
called. We intend to properly address the handling of static 
variables in the future.  
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