
Optimal Polynomial-Time Interprocedural Register
Allocation for High-Level Synthesis Using SSA Form

 Philip Brisk Ajay K. Verma Paolo Ienne

Processor Architecture Laboratory
Swiss Federal Institute of Technology, Lausanne (EPFL)

Lausanne, Switzerland
{philip.brisk, ajaykumar.verma, paolo.ienne}@epfl.ch

ABSTRACT
An optimal, polynomial-time algorithm for interprocedural
register allocation in high-level synthesis and ASIP design is
presented. The algorithm determines the minimum number of
registers required to store all scalar variables in an application
without spilling any to memory. Although an optimal polynomial-
time algorithm has been presented in the past for individual
procedures in Static Single Assignment (SSA) Form, this is the
first such claim for the interprocedural analogue of the problem,
which considers interferences across procedure calls. A new
extension of SSA Form is introduced, and an example illustrates
that this new representation can reduce the number of registers
required for an optimal allocation. A secondary aspect of the
optimal algorithm is that it is scalable: there is no need to build a
complete interprocedural interference graph and each procedure
can be colored individually. Our experiments show that the
optimal algorithm runs more than 100× faster than a previously
published scalable sub-optimal heuristic for the same problem.

Categories and Subject Descriptors
B.5.2 [Hardware]: Register-Transfer Level Implementation –
automatic synthesis; optimization.

General Terms
Algorithms, Performance, Design.

Keywords
High-Level Synthesis, Register Allocation, SSA Form.

1. INTRODUCTION
Register allocation in the context of high-level synthesis (HLS)
and application-specific (instruction-set) processor (ASIP) design
is the problem of determining precisely how many registers are
required for the system. Typically, register allocation is modeled
as a graph coloring problem. An interference graph G = (V, E) is
constructed, where each vertex v∈V represents a variable, and an
edge (x, y) is added to E if the lifetimes of x and y overlap. Two
such interfering variables cannot share the same storage location.

A subset S⊆ V of variables can share the same register if and
only if S is an independent set, i.e. the vertices in S are pairwise
non-adjacent. The goal of the minimum coloring problem is to
partition V into the minimum number of non-overlapping
independent sets. In the context of coloring, all of the vertices
belonging to the same independent set are assigned an integer
value, called a color, and each independent set is called a color
class.

If there are k independent sets, then colors 1..k are assigned to the
vertices in each color class. A register is allocated to the system
for each color class, and each variable assigned to the ith color
assign is then bound to the ith register.

Although graph coloring is NP-Complete, there are many classes
of graphs for which the coloring problem can be solved optimally
in polynomial-time. In particular, this paper focuses on the class
of chordal graphs, which can be colored optimally in O(|V| + |E|)
time using a greedy algorithm by Gavril [10]. The method
proposed in this paper ensures that the interprocedural
interference graph is a chordal graph, and a method is presented
that colors each procedure optimally and individually.

The key to the success of the algorithm presented in this paper is a
novel interprocedural program representation that extends Static
Single Assignment (SSA) Form; the new representation is called
SSA Form with Launch and Landing Pads (SSA-LLP). SSA-LLP
Form pre-allocates the minimum number of caller-save registers
to the design to hold all of the variables that are live across every
procedure call point in the program; by copying variables to and
from these registers before and after each call, SSA-LLP form
ensures that no variables defined locally in two separate
procedures interfere with one another, while ensuring that the
interprocedural interference graph is chordal.

The color assignment procedure outlined here is scalable. It does
not require the construction of a complete interprocedural
interference graph, and the interference graph for each procedure
can be colored individually. It runs more than 100× faster than a
previously-published scalable sub-optimal heuristic [1].

2. RELATED WORK
2.1 Register Allocation
Techniques for register allocation in high-level synthesis have
developed over the years as the granularity of the application
being synthesized has increased. In the mid-1980s, the typical
application was a dataflow graph (DFG) whose operations had
already been scheduled and bound to resources. A DFG can
represent an acyclic program—via if-conversion, it can handle
conditions, but it cannot represent loops. In 1986, Tseng and
Siewiorek [26] formulated register allocation as a clique
partitioning problem on a compatibility graph, the inverse of an
interference graph; a sub-optimal heuristic was presented. In
1987, Kurdahi and Parker [17] showed that the interference graph
for a DFG was an interval graph that could be colored optimally
using the Left Edge Algorithm [28], originally developed by
Hashimoto and Stevens [14] for channel routing. Springer and
Thomas [21] showed that interference graphs are chordal if
restrictions are placed on variable lifetimes and procedure calls.

A cyclic DFG has feedback edges and can thus represent loops.
Stok [23] showed that an interference graph for a scheduled cyclic
DFG is a circular arc graph, for which coloring is NP-Complete.

In 2005 and 2006, Bouchez et al. [2], Brisk et al. [5], and Hack
and Goos [12] independently proved that an interference graph for
a program represented in SSA Form is a chordal graph. In short,
SSA Form imposes the same restrictions on variable lifetimes that
were noted by Springer and Thomas a decade earlier.

Vemuri et al. [27] were the first to study interprocedural register
allocation for high-level synthesis. They built an interprocedural
interference graph (IIG), which includes both local interferences
as well as global interferences across procedure calls. Beidas and
Zhu [1] developed a scalable algorithm using a technique called
Color Palette Propagation (CPP) that avoided building a
complete IIG and colored each procedure individually. Top-down
and bottom-up CPP techniques propagated interferences across
procedure call boundaries. Their results were comparable to
Vemuri et al. with a runtime that was 100× faster. Both of these
techniques are heuristics that cannot claim optimality.

There has been considerable work on register allocation in
compilers (e.g. [4, 6])—far too much to enumerate here. Since the
number of registers in the target architecture is fixed, the primary
goal of such allocators is to minimize the cost of spilling variables
to memory; a secondary goal is to assign registers to eliminate as
many copies as possible. Computing a minimal coloring of an
interference graph does not suffice to solve these problems.

Relevant to this work, however, is interprocedural register
allocation in compilers [7, 22]. Many RISC architectures dedicate
certain registers as caller-save and callee-save, and the goal of
such allocators is to minimize the cost of saving and restoring
variables at procedure call and return points. The SSA-LLP
representation effectively preallocates a sufficient number of
caller-save registers to handle all the variables that are live across
each call point in the application, including every possible
transitive sequence of calls. This will be described in greater
detail in Section 4.

2.2 Chordal Graphs
Let G = (V, E) be an undirected graph. A cycle is a set of vertices
{v0,v1, …, vj} in the graph, such that there is an edge (vi, v(i+1) mod j)
for i = 0, 1, …, j. A chord is an edge (vs, vt) that is not part of the
cycle, i.e. t ≠ (s+1) mod j. A chordless cycle (hole) [8] is a cycle
of length at least 4 that does not contain a chord (note that a cycle
of length 3 is a clique, and a cycle of length 2 is simply an edge
between a pair of vertices). A chordal graph is defined to be any
graph that contains no chordless cycles of length 4 or more.

For v∈V, N(v) is the set of vertices adjacent to v. An Elimination
Order (EO) is a function σ that assigns a unique number from the
set set {1, .., |V|} to each vertex. Given an EO, vertices are named
such that σ(vi) = i. Let Vi = {vj | j < i}, and Gi = (Vi, Ei) be the
subgraph of G induced by Vi; G0 is the empty graph, and Ni(vj) =
{vk∈N(vj) | k < i}. In other words, Ni(vj) contains all vertices
adjacent to vj that occur before vj in the EO.

In a graph G, vertex v is defined to be simplical if N(v) is a clique.
A Perfect Elimination Order (PEO) is an EO such that vi is
simplical in Gi, i.e. that Ni(vi) is a clique, for each vertex vi∈V.
An equivalent definition of a chordal graph is any graph that has a

PEO. A PEO [25] and an optimal color assignment [10] can both
be computed in O(|V| + |E|) time for chordal graphs.

2.3 Compiler Preliminaries
To conserve space, we assume that the reader is familiar with
compiler concepts such as the Control Flow Graph, Liveness
Analysis, and how to construct an interference graph; if not, a
compiler textbook (e.g. [9]) should be consulted. Although this
paper extends Static Single Assignment (SSA) Form, the reader
does not need to understand the details; the paper by Briggs et al.
[3] is probably the most accessible reference on SSA Form.

2.3.1 The Interprocedural Interference Graph
Two variables interfere if they are both live at some point in an
application. Local interferences are between two variables in the
same procedure, and they can easily be detected using liveness
analysis [9]. Global interferences are interferences between
variables across procedure calls. For example:

 X ← …
 CALL A (1)

 … ← X
For simplicity, assume that X is not a parameter passed to A and
that there are no recursive function calls. X globally interferes
with every variable defined locally in A; Beidas and Zhu [1] call
these immediate global conflicts. X will also transitively interfere
with all local variable defined in any procedure that could be
called before A terminates. Beidas and Zhu call these transitive
interferences global conflicts. We do not distinguish between
immediate and non-immediate global conflicts.

An Interprocedural Interference Graph (IIG) is an undirected
graph G = (V, E), where there is a vertex in V for every variable
in the program, and an edge (x, y) is placed between ever pair of
variables x and y that interfere locally or globally. Any legal
coloring of G is a legal solution to the interprocedural register
allocation problem for synthesis.

2.3.2 The Call-Points Graph
Let P be the procedures in an program, and C be the set of points
in the program where one procedure calls another. We assume
that all calls are direct, i.e. there are no function pointers. This
ensures that only one procedure is called from each call point.

The Call-Points Graph (CPG) is a directed graph, GCPG = (VCPG,
ECPG), where VCPG = P∪ C. Let ck∈C be a point where Pi calls
procedure Pj. Then edges (Pi, ck) and (ck, Pj) are added to ECPG.
This ensures that each call point has exact one predecessor (the
caller) and one successor (the callee) in the CPG. We assume that
P1 is the entry procedure of the program (typically called main in
languages like C/C++), and that P1 is the only node in the CPG
with no predecessors. An example CPG is shown in Fig. 1.

A cycle in the CPG represents a (set of mutually) recursive
function(s). Clearly, no variable can reside in a register across a
mutually recursive function call. Otherwise, the first recursive call
to the same function will overwrite the variable’s value. The only
way to store variables across function calls is to push them onto a
runtime stack, which is exactly what software compilers do. The
same must be done for hardware synthesis; or alternatively,
recursive function calls cannot be supported.

For the purpose of register allocation, it suffices to eliminate
recursive function calls from the CPG since locally defined
variables will reside in memory across these call points. It suffices
to compute the strongly connected components (SCCs) [24] of the
CPG, and collapse each SCC into a single node. The result is
called the Augmented Components Graph in graph theoretic
literature. Throughout the remainder of this paper, we can thus
assume that the CPG is acyclic to simplify the discussion.

3. GLOBAL INTERFERENCES
In interprocedural register allocation, we must determine how
many registers are necessary to store variables that are live across
each call on each path through the CPG. Let Pi be a procedure
with interference graph Gi = (Vi, Ei), and let the chromatic
number of Gi be χi = χ(Gi). If δi is the number of global
interferences between Pi and local variables defined within its
ancestors in the CPG, then δi + χi registers are needed for Pi. If Pi
is represented in SSA Form, then Gi is chordal and χi is computed
efficiently. Here, we describe how to compute δi efficiently as
well.

Let ck be a call point in the CPG where Pi calls Pj. Let L(ck) be the
set of local variables in Pi that are live across ck. Let T = (P1, P2,
…, Pj) be a path in the CPG from P1 to Pj. To simplify notation,
let C = {c1, …, ck-1} be the call points along this path. Then

 () ()U
1

1

−

=

=
j

i
icLTL . (1)

The total number of registers required to store variables along this
particular path is |L(T)|. One approach to computing δj would be
to enumerate every possible path from P1 to Pj and select the
largest L-value among all of these paths; however, there are an
exponential number of unique paths in a DAG in the worst-case.

We can compute δj in O(|VCPG| + |ECPG|) time by processing the
basic blocks of the CPG in topological order. First, let us redefine
δ as a function δ: VCPG → {0, 1, … }; we use the notation δj in
place of δ(Pj) for brevity. For a procedure Pj, δj is defined as
described above; δ1 = 0, since there are no variables live across
the entry procedure. For a call point ck where Pi calls Pj, δk = δi +
|L(ck)|.

For procedure Pi, let Ci be the set of call points that call Pi. Since
vertices are processed in topological order, δi is known before we
compute δk for each call point ck∈Ci. Then

 { }kCci
ik

δδ
∈

= max . (2)

The correctness of this algorithm follows from the fact that the
CPG is acyclic and the vertices are processed in topological order;
a formal proof is omitted to save space. An example,
corresponding to Fig. 1, is shown in Table 1 above.

4. LAUNCH AND LANDING PADS
In this section, we present a new program representation that
ensures that the IIG is a chordal graph. The initial step is to
compute δi for each procedure Pi as described in the preceding
section. Let δmax = max{δ1, …, δN}, N = |VAC-CPG|. δmax is the
number of registers required to hold variables that are live across
procedure calls and are involved in global interferences. A leaf is
a procedure with no successors in the CPG. Clearly, δmax
corresponds to an δi-value for a leaf, although there may be non-
leaf procedures whose δi-values are equal to δmax.

Next, we allocate M = δmax global registers T = {T1, …, TM} to
hold these values. Now, consider procedure Pi. We assume that
prior to calling Pi then m = δi variables that are live at the point
where Pi is called reside in registers T1, … Tm. Now, consider a
call point ck where Pi calls Pj. At the call point, we have an
additional n = δk - δi variables that are live across the call. These
variables are stored in registers Tm+1, …, Tm+n.

In general, we cannot assume that the color assignment phase can
and/or will be able to assign these variables to the desired
registers. To make this assignment feasible, we introduce parallel
copy instructions—called Launch and Landing Pads before and
after each call instruction respectively. Launch pads copy the
variables in L(ck) to global registers Tm+1, …, Tm+n, and landing
pads copy them back to their original registers. Ψ denotes a
launch pad and Ψ-1 denotes a landing pad. Both Ψ and Ψ-1 are
parallel copy operations, similar in principle to ϕ-functions in
SSA Form [12]. A procedure call augmented with launch and
landing pads would have the following form:

(Tm+1, …, Tm+n) ← Ψ(L(ck))
 Call Pj (3)

 (L(ck)) ← Ψ-1(Tm+1, …, Tm+n).

Call Point |L(ci)| δi Procedure δi
P1
P2
P3
P4
P5
P6

0
2
3
2
6
5

c7
c8
c9
c10
c11
c12
c13
c14

1
2
3
2
5
3
3
2

1
2
3
2
5
5
6
4

Table 1.
Example of the δi values for the CPG in Fig. 1 using the

|L(ci)| values provided in the second column.

P1

c7 c8 c9 c10 c11

P2 P3 P4

P6 c14 c12 c13 P5

Figure 1. An example CPG.

Launch and landing pads eliminate all interferences between
variables defined locally in separate procedures. Global
interferences are now between a variable assigned to a register in
T and a variable defined locally in another procedure further
down the call chain.

Any instruction of the form y ← … defines variable y. One of the
defining features of SSA Form is that variables are defined
exactly once [3]. SSA Form with Launch and Landing Pads (SSA-
LLP) relaxes this constraint. For example, each variable in L(ck) is
now defined multiple times: once at the original definition point,
and now once by a landing pad. This is not problematic, however,
as the LLP extension to SSA is only required for register
allocation. The launch and landing pads do not need to be inserted
prior to register allocation. Thus, any other SSA-based
optimization or analysis can be applied without concern.
Alternatively, the representation can treat the launch pad, call
instruction, and landing pad as one atomic operation that is not
exposed to the optimizer; this hides both the re-definition of
variables and the use of the global registers in T.
There is a distinct similarity between the launch and landing pads
and caller-save registers [7, 22] used for interprocedural register
allocation in compilers. Specifically, all registers, except those in
T, are caller-save, in this context, and the registers in T receive the
values immediate prior to the call. In a typical compiler, the
variables would be pushed and popped onto the stack frame rather
than copied to and from registers in T.

4.1 Example
Fig. 2 shows an example that illustrates how SSA-LLP Form can
reduce the chromatic number of an IIG. Fig. 2 (a) shows a short
program containing two functions, A and B, both of which satisfy
the criteria for SSA Form. Fig. 2 (b) shows procedure A converted
to SSA-LLP Form; procedure B calls no functions, so it needs no
launch or landing pads. The respective IIGs are shown in Fig. 2
(c) and (d) respectively.

The IIG in Fig. 2 (c) is a well-known graph called a 5-hole [8].
First and foremost, this graph is not chordal because it contains a
chordless cycle. Second, the 5-hole is well-known because it is
the smallest imperfect graph, i.e. one whose chromatic number is
larger than the cardinality of its maximal clique. The largest
clique contains 2 vertices, but its chromatic number is 3.

After converting procedure A to SSA-LLP form, the resulting IIG
is shown in Fig. 2 (d). This interference graph is chordal; since all
chordal graphs are perfect graphs, the chromatic number is equal
to the maximal clique; here, both values are 2. Fig. 2 illustrates
that converting from SSA Form to SSA-LLP Form can reduce the
chromatic number of the IIG, and thus the number of registers
allocated to the datapath (HLS) or ASIP register file.

5. CHARACTERIZING THE IIG
Lemmas 1 and 2 and Corollaries 1 and 2, which follow, allow us
to characterize an IIG for an application in SSA-LLP Form. Let
the set of procedures be P = {P1, …, Pk} and T = {T1, …, TM} be
the set of global registers. For each procedure Pi, let Gi = (Vi, Ei)
be its local interference graph. The In Lemma 1 and Corollary 1,
which follow, Pi and Pj are distinct procedures, i.e. i ≠ j, in SSA-
LLP Form; a few proofs are omitted to conserve space.

Lemma 1. No variable vi defined locally in Pi interferes with a
variable vj defined locally in Pj.

Corollary 1. No variable defined in procedure P1 = main can be
involved in a global interference in an SSA-LLP form application.

In an IIG, the global registers are T = {T1, …, TM}. GT = (T, ET) is
the induced subgraph of the IIG containing variables in T. Lemma
2 follows from the fact that δmax = M, and that the variables
involved in global interferences are stored in T.

Lemma 2. T = {T1, …, TM} forms a clique in the IIG.

Corollary 2. Any EO σ(T) is a PEO of GT.

When procedure Pi is called, m = δi variables reside in global
registers T1, …, Tm, as discussed in Section 4. The purpose of the
launch and landing pads is to ensure that these variables are
assigned to this specific set of registers. Each global register Tj,
where 1 < j < m, interferes globally with every variable defined
locally in Pi, e.g. the set Vi; likewise, no global register, Tj, where
m+1 < j < M, interferes with any variable in Vi. The set of global
interferences involving local variables in Pi is denoted E(T, i).
The IIG, G* = (V*, E*), is defined as follows:

 U
k

i
iVTV

1

*
=

∪= (4)

 ()U
k

i
iTiT EEEE

1
,*

=

∪∪= (5)

Procedure: A

V ← …
Call B
W ← …
… ← V
X ← …
… ← W
Y ← …
… ← X
Call B
… ← Y

Procedure: B

Z ← …
… ← Z

V W

Z

Y

Figure 2. A small SSA-Form program (a) converted to
SSA-LLP Form (b) and respective IIGs (c) and (d).

(a) (b)

T1

Procedure: A

V ← …
T1 ← Ψ(V)
Call B
V ← Ψ-1(T1)
W ← …
… ← V
X ← …
… ← W
Y ← …
… ← X
T1 ← Ψ(Y)
Call B
Y ← Ψ-1(T1)
… ← Y

X

(c)

V

W X

Y

Z

(d)

Fig. 3 shows the IIG for the application shown in Fig. 1 with the
|L(ci)| and δi values taken from Table 1. Local interferences are
not shown. Since the application is in SSA-LLP Form, each
subgraph Gi is a chordal graph. Many of the clique edges in ET are
not shown in order to make the illustration easier to follow.

5.1 THE IIG is Chordal
Here, we prove that an IIG for an application in SSA-LLP Form is
a chordal graph. Lemma 3 describes how to build an IIG for a
procedure that includes a global interference at the call point.

Lemma 3. Consider a procedure P in SSA Form with (chordal)
interference graph G = (V, E) and let v be a variable that is live
across a call to P. Then the graph G’ = (V’, E’) induced by V’ =
V∪ {v} is chordal.

Proof. Consider vertex vi∈V. Since G is chordal G has a PEO. vi
is simplical in subgraph Gi = (Vi, Ei) induced by Vi = {v1, …, vi}.
In other words, Ni(vi) is a clique.
Now, let Vi’ = Vi∪ {v} and let Ni’(vi) be the set of neighbors of vi
in Vi’. If V0’ = {v}, v is simplical in V0’. Since v interferes with
every variable in V, it follows that Ni’(vi) = Ni(vi)∪ {v} is a
clique for i > 0. Therefore vi is simplical in Gi’. �

Corollary 3. Let T be a set of variables that are live across a call
to procedure P with chordal interference graph G = (V, E). Then
the subgraph G’ = (V’, E’) induced by V’ = V ∪ T is chordal.

Let ○: α × α → α, be an operator that concatenates two EOs;
e.g.: α(X) ○ α(Y) = α(X)α(Y) = α(XY), where XY is the union of
vertex sets X and Y (including all edges connecting a vertex in X
to a vertex in Y. When implicit, e.g.: α(X)α(Y), ○ may be omitted.

Let α(G*) = σ(T)σ(G1)σ(G2)… σ(Gk) be an EO of G*. σ(T) and
each σ(Gi) term is a PEO. In the remainder of this section, we
prove that α(G*) is a PEO.

Consider a vertex v∈V*. Let N*(v) be the set of vertices adjacent
to v in G*. If α(v) = i, then let Ni*(v) be the set of vertices
adjacent to v that precede v in α(G*).

Theorem 1. α(G*) is a PEO of G*.

Proof. Assume to the contrary that α(G*) is not a PEO of G*.
Then there is some vertex v∈V such that Ni*(v) is not a clique.
If v∈T, let v = Tj. So Ni*(v) = {T1, …, Tj-1}. Observe that all
vertices in T precede all others in α by construction. Therefore the
subgraph of G* induced by Ni*(Tj) is not a clique, which
contradicts Lemma 2.
Otherwise, let v∈Vi for some interference graph Gj = (Vj, Ej) that
corresponds to procedure Pj. First, note that Gj is a chordal graph
since Pj is a procedure in SSA Form. Let Uj be the subset of
vertices of Vj that precede v in σ(Gj) and thus precede v in α(G*).
Since Gj is chordal and σ(Gj) is a PEO of Gj, it follows that v is
simplical in the subgraph of Gj induced by Uj.
Let x, y∈Ni*(v) be two non-adjacent vertices.
(1) By the reasoning above, both x and y cannot belong to Uj. This
would contradict the fact that σ(Gi) is a PEO of Gi.
(2) Neither x nor y can be defined locally in some procedure other
than Gj. Since they interfere with v, which is defined locally in Gj,
this would contradict Lemma 1, which states that two variables
defined locally in different procedures cannot interfere.
(3) Both x and y cannot belong to T. Since they do not interfere,
this would contradict Lemma 2 which states that T is a clique.
(4) By (1)-(3), it follows, without loss of generality, that x∈T and
y∈Vi. Since x∈Ni(v) and x∈T , the interference between x and v
is global. Therefore x is live across the call to procedure Pi. By
Corollary 3, x interferes with every variable defined locally in Gj,
which includes y, contradicting the fact that x and y do not
interfere.

Therefore α(G*) is a PEO of G*. �

Corollary 4. G* is a chordal graph.

Henceforth, α(G*) will be replaced with σ(G*) since α(G*) is a
PEO of G*. σ represents a PEO, whereas α represents any EO.

6. COLORING THE IIG
In this section, we present an efficient algorithm to color the IIG.
We prove that the algorithm is optimal and derive its time
complexity. Like the algorithm of Beidas and Zhu [1], we do not
construct the complete IIG. This ensures that the algorithm is not
only optimal, but practical.

Since σ(G*) can be constructed deterministically, as long as we
have pre-computed PEOs of each individual procedure as well as
σ(T), we focus solely on using this specific PEO.

 Let R = max{δ1 + χ1, …, δn + χn}, where χI is the chromatic
number of interference graph Gi for procedure Pi. Let χ(G*) be
the chromatic number of G*, the IIG.

Theorem 2. χ(G*) = R.

Figure 3. The IIG for the application depicted in Fig. 1
with |L(ci)| and δi values taken from Table 1.

G2 G3
 G4

 G5
 G6

T1 T2 T3 T4 T5 T6

δ2 = 2 δ3 = 3 δ4 = 2 δ5 = 6 δ6 = 5

CLIQUE

G1
 δ1 = 0

Global interference
Tj interferes with each
local variable in Gi

Proof. Without loss of generality, let R = δi + χi. Since there is at
least one path from P1 to Pi along which δi global variables are
defined across the call to Pi, R > δi + χi. Hence, δi variables
already reside in registers before calling Pi and at most χi
variables are simultaneously live in Pi. Therefore χ(G*) > R.

Let ω(G*) be the cardinality of the largest clique in G*. Since all
chordal graphs are perfect graphs [8], χ(G*) = ω(G*). We must
show that no clique C exists in G* such that |C| > R. Assume to
the contrary that some clique C does exist in G* such that |C| > R.

Let V(δj + χj) be a subset of vertices of G* containing the first δj
vertices in T (i.e. if m = δj, then T1…Tm are the first m vertices)
and a subset of χj vertices in Vi that form a maximal clique in Gj.
V(δj + χj) is a clique by Lemma 3 and Corollary 3. Since R = δi +
χi, then every clique V(δj + χj) must satisfy |V(δj + χj)| < R; the
contrary would contradict the fact that R is maximal taken across
every procedure.
Since C > R, it follows that C must have some extra vertices from
somewhere. There are two possible locations for extra vertices. If
C includes vertices from Tm+1…Tn, n = |T|, then C is not a clique
because none of these vertices interfere with any variables defined
locally in Pi. Therefore, the extra vertices must come from some
procedure Pj, j ≠ i. Since C is a clique, these extra variables must
interfere with the variables defined locally in Pi, which
contradicts Lemma 1. Therefore, |C| = χ(G*) < R. Since we
have already shown that χ(G*) > R, it follows that χ(G*) = R. �

Now that we have established that the IIG is chordal, we focus on
coloring it optimally. For vertex v∈Vi, let color(v) be the color
assigned to v when Gi is colored optimally and color*(v) be the
color assigned to v when G* is colored. In other words, color(v) is
the color assigned to v if Gi was colored separately, outside of the
context of interprocedural register allocation. color*(v) is a color
that could be assigned to v by optimally coloring [10] the
complete IIG. By relating color*(v) to color(v), Theorem 3, which
follows, effectively describes an optimal algorithm for coloring
the IIG that simply colors each procedure individually. There is
no need to construct the complete IIG, which makes this
algorithm scalable like the CPP heuristic of Beidas and Zhu [1].

Theorem 3. color*(v) = color(v) + δi is a legal color assignment
for each variable v defined locally in procedure Pi.

Proof. For each Ti∈T, let color(Ti) = i. Since T is a clique
(Lemma 2), |T| colors are needed to color T.
Now, consider procedure Pi with interference graph Gi = (Vi, Ei).
Let v∈Vi and let σ(v) = j, i.e. v is the jth

 vertex in the PEO for Gi.
The proof is achieved using induction on j.
If j = 0, then color(v) = 1 by Gavril’s algorithm [10]. In G*,
Nj*(v) = {T1, …, Tm}, where m = δi, by Lemma 2 and Corollaries
2 and 3. Therefore the first available color for v is 1 + δi.
Therefore color*(v) = color(v) + δi.
For the induction, suppose that for j < k, every vertex v such that
σ(v) = j satisfies color*(v) = color(v) + δi. Now let v be the vertex
in Vi such that σ(v) = k. If Ni(v) is empty, then color(v) = 1 using
the same reasoning as the basis, and color*(v) = 1 + δi = color(v)
+ δi. Otherwise, for each color c, 1 < c < color(v), there must

some vertex u∈Ni(v) such that color(u) = c. Since σ(v) < k, it
follows that color*(u) = c + δi = color(u) + δi. Therefore colors
m+1…c are not available for v. Since {T1, …, Tm}∈Ni*(v), it
follows that colors 1..m are not available for v either. Therefore
the first color available for v is color*(v) = color(v) + δi. �

By Theorem 3, the vertices in G* can be colored by first
assigning colors 1..|T| to the vertices in T, and then coloring the
chordal interference graph for each procedure Pi using the
standard algorithm for chordal coloring. G* is never built.

6.1 Time Complexity
We analyze the time complexity of coloring the IIG as described
in the proof of Theorem 3; Theorem 4 states the result.

Theorem 4. The time complexity, S(G*), of coloring G* is

 () ()⎥
⎦

⎤
⎢
⎣

⎡ ++= ∑
=

k

i
ii EVTOGS

1

* . (6)

Proof. The time to assign colors 1..|T| to each variable in |T| is
O(|T|). The time to apply chordal coloring to the interference
graph Gi for procedure Pi is O(|Vi| + |Ei|). �

The complexity of coloring the complete IIG using Gavril’s
algorithm is S’(G*) = O(|V*| + |E*|). S’(G*) includes two extra
terms: |ET| = ½|T|(|T|-1) = O(|T|2) and |E(T, i)| = δi|Vi|. Thus

 () ()⎥
⎦

⎤
⎢
⎣

⎡ ++= ∑
=

k

i
iii EVTOGS

1

2*' δ . (7)

6.1.1 Further Discussion
The time complexity described above only includes the cost of
computing a coloring. There are several terms whose
contributions have not been taken into account for brevity.
The first omitted term is the complexity of computing the CPG.
This requires a linear traversal of the instructions in each
procedure in order to find the call points. When Pi calls Pj, one
vertex (a call point ck) and two edges, (Pi, ck) and (ck, Pj) are
added to the CPG. If there are k procedures, the cost of finding Pj
in a list is O(k). If I is the total number of instructions in the
application (across all procedures) and there are C call points, the
time complexity becomes O(|I| + |C|k).
The cost of looking up Pj can be reduced to near-constant by
using a hash table. In the worst case, all procedures hash to the
same bucket and the cost per-lookup is still O(k). In the average-
case, this cost can be mitigated by using a good hash function and
allocating a table with a sufficient number of buckets.
The second and third omitted terms are the cost of computing the
SCCs of the CPG to eliminate recursive procedure calls and the
cost of computing the δi-values; both are O(|VCPG| + |ECPG|).
The last omitted term is the cost of performing liveness analysis
and building the interference graph for each procedure. The
algorithms used for these procedures can be found in any
compiler textbook (e.g. [9]). It is well-known that liveness
analysis, in particular, is quite costly in practice.

7. EXPERIMENTAL RESULTS
We implemented the optimal interprocedural register allocation
algorithm into the Machine SUIF compiler framework [20] and
compared our results to the color palette propagation (CPP)
heuristic of Beidas and Zhu [1]. Beidas and Zhu described two
different approaches to color propagation: top-down, and bottom-
up. To color each procedure individually, they use Chaitin’s
heuristic [6], taken from register allocation in compilers; however,
this heuristic actually dates back to the work of A. B. Kempe in
1879 [15]. An improvement to Kempe’s heuristic was proposed in
1983 by Matula and Beck [19], and this heuristic later became the
basis for the optimistic allocator developed by Briggs [4] (and
subsequently enhanced and improved by many others).

We compare the optimal solution using SSA-LLP form presented
here to both the top-down and bottom-up CPP approaches using
Matula and Beck’s coloring heuristic. For the CPP heuristic, we
represented each procedure as a Control Flow Graph (CFG), as
was done by Beidas and Zhu [1]; for the optimal heuristic, we
represented the complete application in SSA-LLP Form.

For our benchmarks, we selected a set of embedded applications
from Mediabench [18] and MiBench [11]. The number of
registers allocated is shown in Table 2 and the runtime is shown
in Table 3. Since the algorithm presented here is optimal, the two
heuristics can do no better.

From Table 2, we see that the bottom-up heuristic never allocates
more registers than the top-down heuristic, and in many cases, it
allocates significantly fewer. In many cases, the bottom-up
heuristic does allocate the same number of registers as the optimal
algorithm; however, this is purely coincidental.

It should be noted that the optimal algorithm can be viewed as a
specific implementation of top-down propagation using SSA-LLP
form; the only colors that are propagated downward are the global
registers, which have been pre-allocated and pre-colored. The
computation of δi-values does most of this work. For procedure
Pi, colors 1 through δi are propagated; Gi is then colored optimally
using Gavril’s algorithm [10], but with δi+1 rather than 1 as the
first available color.

The experiments were performed on a laptop PC with a 2.00 GHz
Intel Pentium M processor with 1.00 Gigabytes of RAM running
Fedora Linux. From Table 3, the optimal algorithm actually runs
much faster than either the top-down or bottom-up heuristics. On
average, we observed a speedup of 128× for the optimal algorithm
compared to top-down CPP and 121× compared to bottom-up
CPP. The complexity of the Matula and Beck heuristic is O(|V|2);
whereas that of chordal coloring is O(|V| + |E|). The complexity
of both top-down and bottom-up CPP includes the cost of
coloring each interference graph as well as the cost of propagating
the palette; the interested reader should refer to the paper by
Beidas and Zhu [1] for details.

As demonstrated by the experiments presented here, the optimal
algorithm is significantly faster than either top-down or bottom-
up CPP, which were the fastest heuristics for interprocedural
register allocation in synthesis that have been published to date.
Admittedly, the CPP heuristics are agnostic about how to
represent each procedure (e.g. CFG vs. SSA Form) and which
heuristic should be used to color each procedure individually. In
principle, one might be able to do better than the results shown
here for top-down and bottom-up CPP by representing each
procedure in SSA Form (but not SSA-LLP) and coloring each
procedure optimally using chordal coloring rather than the Matula
and Beck heuristic. We have not done so, however, because the
algorithm presented here is already optimal and fast, and thus,
there is no need to explore further sub-optimal alternatives.

8. CONCLUSION AND FUTURE WORK
An optimal polynomial-time algorithm for interprocedural register
allocation in the context of HLS and ASIP design has been
presented. To the best of our knowledge, this is the first non-
trivial interprocedural problem in HLS for which a polynomial-
time solution has been found. Experimentally, we have found that
the optimal algorithm is more than 100× faster than the top-down
and bottom-up CPP heuristics of Beidas and Zhu [1], which are
the state-of-the-art at the present.

Benchmark Top Down Bottom-Up Optimal
adpcm_decoder
adpcm_encoder
blowfish
crc32
dijkstra_large
dijkstra_small
fft
g721_decoder
g721_encoder
gsm
mpeg2_decoder
mpeg2_encoder
patricia
pegwit
sha
susan

0.136
0.177

8.06
0.517
0.113
0.113
0.486

1.93
2.8

9.55
9.65

28.957
0.446
288.2
0.425

66.222

0.125
0.153

6.75
0.421

0.0886
0.088
0.446

1.45
1.47
9.44
9.02

28.824
0.396
271.7
0.385
63.51

0.00994
0.047
0.136

0.00518
0.0408
0.0372

0.507
0.064

0.0709
0.289
0.407
0.645

0.0531
0.0585

0.573
0.324

Total
Average

418
26.1

394
24.6

3.27
0.204

Table 3.
Runtime (seconds)

Benchmark Top Down Bottom-Up Optimal
adpcm_decoder
adpcm_encoder
blowfish
crc32
dijkstra_large
dijkstra_small
fft
g721_decoder
g721_encoder
gsm
mpeg2_decoder
mpeg2_encoder
patricia
pegwit
sha
susan

23
22
22
16
10
10
22
41
32
35
62

112
28
41
21
36

15
15
20
12
10
10
21
26
22
31
48
94
13
33
18
23

15
15
20
11
9
9

20
25
22
31
47
91
13
32
18
23

Table 2.
Number of Registers Allocated.

We envision several avenues for future work. One extension
involves integrating register assignment with operation and
connectivity binding to minimize the cost of multiplexers and
wires inserted into the design; this problem is NP-Complete, even
for chordal interference graphs. Another possibility is to explore
SSA-LLP form for interprocedural register allocation in
compilers. Current work on interprocedural register allocation
does not use SSA Form, and only one SSA-based allocator has
been published to date [13].

The discussion in this paper has omitted a few aspects of the C
language, such as function pointers. A function pointer allows a
call point to call multiple functions. This can easily be handled by
the technique presented in this paper. The problem, however, is
that pointer analysis [15] is undecidable in the general case. We
rewrote the g721 and gsm applications so that we could compile
them without function pointers. Due to the widespread use of
function pointers, we were unable to compile jpeg.

This paper has not addressed static variables, which can reside in
registers across recursive function calls. Static variables are
defined only the first time that a function is called; subsequent
calls skip over the definition, similar in principle to predicated
execution. Once initialized, a static variable remains live until
either the program terminates or execution reaches a place at
which the function containing the static variable can no longer be
called. We intend to properly address the handling of static
variables in the future.

REFERENCES
[1] Beidas, R., and Zhu, J. Scalable interprocedural register allocation

for high-level synthesis. In Proc. of the 2005 Conference on Asia
South Pacific Design Automation (ASP-DAC, ’05) (Shanghai, China,
January 18-21, 2005) 511-516.

[2] Bouchez, F., Darte, A., Guillon, C., and Rastello, F. Register
Allocation and Spill Complexity Under SSA, Technical Report 2005-
33, ENS-Lyon, Lyon France, 2005.

[3] Briggs, P., Cooper, K. D., Harvey, T. J., and Simpson, L. T. Practical
improvements to the construction and destruction of static single
assignment form. Software—Practice and Experience,. 28, no. 8,
July, 1998, 859-881.

[4] Briggs, P. Register Allocation via Graph Coloring. Ph.D. Thesis,
Rice University, Houston, TX, USA, 1992.

[5] Brisk, P., Dabiri, F., Jafari, R., and Sarrafzadeh, M. Optimal register
sharing for high-level synthesis of SSA form programs. IEEE Trans.
Computer Aided Design, vol. 25, no. 5, May, 2006, 772-779.

[6] Chaitin, G. J. Register allocation and spilling via graph coloring. In
Proc. of the 1982 SIGPLAN Symp. on Compiler Construction,
(Boston, MA, USA, June 23-25, 1982), pp. 98-101.

[7] Chow, F. Minimizing register usage penalty at procedure calls. In
Proc. of the 1988 Int. Conf. Prog. Language Design and
Implementation (PLDI ’88) (Atlanta, GA, USA, June 22-24, 1988)
85-94.

[8] Chudnovsky, M., Robertson, N., Seymour, P., and Thomas, R. The
strong perfect graph theorem. Technical Report available online.
Initial version, June 20, 2002; revised, July 19, 2005.

[9] Cooper, K. D., and Torczon, L. Engineering a Compiler. Morgan-
Kaufmann, 2003.

[10] Gavril, F. Algorithms for minimum coloring, maximum clique,
minimum covering by cliques, and maximum independent set of a
chordal graph. SIAM J. Comput., vol. 1, no. 2, June 1972, 180-187.

[11] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge,
T., and Brown, R. B. MiBench: a free commercially representative
embedded benchmark suite. In Proc. of the Workshop on Workload
Characterization (WWC ’01), (Austin, TX, USA, December, 2001),
3-14.

[12] Hack, S., and Goos, G. Optimal register allocation for SSA-form
programs in polynomial time. Information Processing Letters, vol.
98, no. 4, May, 2006, 150-155.

[13] Hack, S., Grund, D., and Goos, G. Register allocation for programs
in SSA Form. In Proc. of the 15th International Conf. on Compiler
Construction (CC ’06) (Vienna, Austria, March 30-31, 2006) 247-
262.

[14] Hashimoto, A. and Stevens, J. Wire routing by optimizing channel
assignment within large apertures. In Proc. of the 8th Workshop on
Design Automation (Atlantic City, NJ, USA, June 28-30, 1971) 155-
169.

[15] Hind, M., Burke, M., Carini, P., and Choi, J-D. Interprocedural
pointer alias analysis. ACM Trans. Prog. Languages and Systems,
vol. 21, no. 4, July, 1999, 848-894.

[16] Kempe, A. B. On the geographical problem of the four colors.
American Journal of Mathematics, vol. 2, 1879, 193-200.

[17] Kurdahi, F. J., and Parker, A. C. REAL: A program for Register
Allocation. In Proc. of the 24th ACM/IEE Conf. on Design
Automation (DAC ’87) (Miami Beach, FL., USA, June 28 – July 1,
1987) 210-215.

[18] Lee, C., Potkonjak, M., and Mangione-Smith, W. H. MediaBench: a
tool for evaluating and synthesizing multimedia and communications
systems. In Proc. of the 30th International Symposium on
Microarchitecture (MICRO-30, ’97) (Research Triangle Park, NC,
USA, December 1-3, 1997) 330-335.

[19] Matula, D. W., and Beck, L. L. Smallest last-ordering and clustering
graph coloring algorithms. J. ACM 30, 3, July 1983, 417-427.

[20] Smith, M. D., and Holloway, G. An Introduction to Machine SUIF
and its Portable Libraries for Analysis and Optimization. Technical
Report. Harvard University. 2002. Available online.

[21] Springer, D. L., and Thomas, D. E. Exploiting the special structure of
conflict and compatibility graphs in high-level synthesis. IEEE
Trans. Computer Aided Design, vol. 13, no. 7, July 1994, 843-856.

[22] Steenkiste, P. A., and Hennessy, J. L., A simple interprocedural
register allocation algorithm and its effectiveness for LISP. ACM
Trans. Prog. Languages and Systems, vol. 11, no. 1, January, 1989,
1-32.

[23] Stok, L. Transfer free register allocation in cyclic data flow graphs.
In Proc. of the European Conference on Design Automation (Euro-
DAC ’92) (Brussels, Belgium, March 16-19, 1992) 181-185.

[24] Tarjan, R. E. Depth-first search and linear graph algorithms. SIAM J.
Comput., vol. 1, no. 2, June, 1972, 146-160.

[25] Tarjan, R. E., and Yannakakis, M. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selective
reduce acyclic hypergraphs. SIAM J. Comput., vol. 13, no. 3, August,
1984, 566-579.

[26] Tseng, C-J., and Siewiorek, D. P. Automated synthesis of data paths
in digital systems. IEEE Trans. Computer Aided Design, vol. 5, no.
3, July, 1986, 379-395.

[27] Vemuri, R., Katkoori, S., Kaul, M., and Roy, J. An efficient register
optimization algorithm for high-level synthesis from hierarchical
behavioral specifications. ACM Transactions on Design Automation
of Electronoic Systesm, vol. 7, no. 1, January 2002, 189-216.

[28] Zhang, S., and Dai, W. M. Linear time left edge algorithm. Int. Conf.
Chip Design Automation (ICCDA ’00) (Beijing, China, August 21-
25, 2000).

