
Type Inference

Viktor Kunčak

Type inference

In a statically typed language, when a program expression type checks, we can usually
assign a type to each of its parts.
▶ for some parts the type is given directly: types of symbols

(propagated from declarations using type environment Γ)
▶ for other parts, the type is inferred so that the entire expression type checks

We can consider different type inference algorithms, even for the same type system.

Two examples:
▶ bottom up propagation of types
▶ Hindley-Milner constraint-based type inference

Bottom up inference example

Require types of parameters to be declared
Apply type system rules to compute the types of a tree node from the types of children

Gives recursive algorithm to compute types for all tree nodes (starting from leaves)

def message(s: String, verbose: Int)

: Unit

= {
(if (verbose

: Int

> 1)

: Bool

{ print(s

: String

)

: Unit

}
else { print(".")

: Unit

})

: Unit

}

Inferred types for sub-expressions and established that the program type checks.

Bottom up inference example

Require types of parameters to be declared
Apply type system rules to compute the types of a tree node from the types of children

Gives recursive algorithm to compute types for all tree nodes (starting from leaves)

def message(s: String, verbose: Int)

: Unit

= {
(if (verbose : Int > 1)

: Bool

{ print(s : String)

: Unit

}
else { print(".")

: Unit

})

: Unit

}

Inferred types for sub-expressions and established that the program type checks.

Bottom up inference example

Require types of parameters to be declared
Apply type system rules to compute the types of a tree node from the types of children

Gives recursive algorithm to compute types for all tree nodes (starting from leaves)

def message(s: String, verbose: Int)

: Unit

= {
(if (verbose : Int > 1) : Bool { print(s : String)

: Unit

}
else { print(".")

: Unit

})

: Unit

}

Inferred types for sub-expressions and established that the program type checks.

Bottom up inference example

Require types of parameters to be declared
Apply type system rules to compute the types of a tree node from the types of children

Gives recursive algorithm to compute types for all tree nodes (starting from leaves)

def message(s: String, verbose: Int)

: Unit

= {
(if (verbose : Int > 1) : Bool { print(s : String) : Unit }
else { print(".")

: Unit

})

: Unit

}

Inferred types for sub-expressions and established that the program type checks.

Bottom up inference example

Require types of parameters to be declared
Apply type system rules to compute the types of a tree node from the types of children

Gives recursive algorithm to compute types for all tree nodes (starting from leaves)

def message(s: String, verbose: Int)

: Unit

= {
(if (verbose : Int > 1) : Bool { print(s : String) : Unit }
else { print(".") : Unit})

: Unit

}

Inferred types for sub-expressions and established that the program type checks.

Bottom up inference example

Require types of parameters to be declared
Apply type system rules to compute the types of a tree node from the types of children

Gives recursive algorithm to compute types for all tree nodes (starting from leaves)

def message(s: String, verbose: Int)

: Unit

= {
(if (verbose : Int > 1) : Bool { print(s : String) : Unit }
else { print(".") : Unit}) : Unit

}

Inferred types for sub-expressions and established that the program type checks.

Bottom up inference example

Require types of parameters to be declared
Apply type system rules to compute the types of a tree node from the types of children

Gives recursive algorithm to compute types for all tree nodes (starting from leaves)

def message(s: String, verbose: Int) : Unit = {
(if (verbose : Int > 1) : Bool { print(s : String) : Unit }
else { print(".") : Unit}) : Unit

}

Inferred types for sub-expressions and established that the program type checks.

Bottom up inference example

Require types of parameters to be declared
Apply type system rules to compute the types of a tree node from the types of children

Gives recursive algorithm to compute types for all tree nodes (starting from leaves)

def message(s: String, verbose: Int) : Unit = {
(if (verbose : Int > 1) : Bool { print(s : String) : Unit }
else { print(".") : Unit}) : Unit

}

Inferred types for sub-expressions and established that the program type checks.

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s

:τs

, verbose

:τv

)

:τ0

=
(if (verbose

:τv

> 1)

:τc

{ print(s

:τs

)

:τ1

}
else { print(".")

:τ2

})

:τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules

▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:

▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit
substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)

▶ generate constraints (equalities) between variables, according to type system rules

▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:

▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit
substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules

▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:

▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit
substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)

▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:

▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit
substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)

▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:

▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit
substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)

▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)
▶ solve constraints. Here, eliminate variables using “defining” equations:

▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit
substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:

▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit
substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:

▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit
substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:
▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit

substituting τ1 in τ0 =τ1 gives: τ0 = Unit
▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:
▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit

substituting τ1 in τ0 =τ1 gives: τ0 = Unit

▶ insert the inferred types into the syntax tree

Constraint-based inference example (primitive types)
▶ start with a program (may or may not have type annotations)

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ assign type variables to denote types we need to infer (τs ,τv ,τ0,τc ,τ1,τ2)
▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

▶ solve constraints. Here, eliminate variables using “defining” equations:
▶ τv = Int, τc = Bool , τs = String , τ1 = Unit, τ2 = Unit

substituting τ1 in τ0 =τ1 gives: τ0 = Unit
▶ insert the inferred types into the syntax tree

From a type system rule to a constraint

def message(s

:τs

, verbose

:τv

)

:τ0

=
(if (verbose

:τv

> 1)

:τc

{ print(s

:τs

)

:τ1

}
else { print(".")

:τ2

})

:τ0

▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

⊢ b : Bool ⊢ t1 :τ ⊢ t2 :τ
⊢ (if (b) t1 else t2) :τ ⇝ ⊢ b :τc ⊢ t1 :τ1 ⊢ t2 :τ2

⊢ (if (b) t1 else t2) :τ0
τc = Bool ,τ2 =τ1,τ0 =τ1

From a type system rule to a constraint

def message(s :τs, verbose :τv) :τ0 =
(if (verbose :τv > 1) :τc { print(s :τs) :τ1 }
else { print(".") :τ2}) :τ0

▶ generate constraints (equalities) between variables, according to type system rules
▶ τv = Int, Int = Int, τc = Bool (from _>_)
▶ τs = String , τ1 = Unit (from first print)
▶ String = String , τ2 = Unit (from second print)
▶ τc = Bool , τ2 =τ1, τ0 =τ1 (from if)

⊢ b : Bool ⊢ t1 :τ ⊢ t2 :τ
⊢ (if (b) t1 else t2) :τ ⇝ ⊢ b :τc ⊢ t1 :τ1 ⊢ t2 :τ2

⊢ (if (b) t1 else t2) :τ0
τc = Bool ,τ2 =τ1,τ0 =τ1

Hindley-Milner type inference overview

Part of type systems of languages such as Haskell, ML, ocaml.
Supports not only primitive types, but also generic structured types such as:
Function[τA,τB],Pair [τA,τB],List[τA].
Type inference:

1. Use type variables (e.g. τv , τs) to denote unknown types
2. Use type checking rules to derive constraints among type variables

(e.g., arguments have expected types)
3. Use a unification algorithm to solve the constraints

List[τA] = List[Int], Pair [Int ,τB] = Pair [τA,Bool]

Programs can often be as concise as in a dynamically typed language.

Type inference still catches meaningless programs: if the equations have no solution so
the compiler reports a type error.

Small language with tuples and functions
Types are:

1. primitive types: Int, Bool, String, Unit
2. type constructors:
▶ Pair[A,B] or (A,B) denotes set of pairs
▶ Function[A,B] or A⇒B denotes functions from A to B

Abstract syntax of types:

t := Int |Bool | String |Unit | (t1,t2) | (t1⇒ t2)

Terms include pairs and anonymous functions (x denotes variables, c literals):

t := x | c | f (t1, . . . ,tn) | if (t) t1 else t2 | (t1,t2) | (x ⇒ t)

Primitives P1,P2 for pair components, if t = (x ,y) then P1(t) = x , P2(t) = y .
We write them as in Scala: t ._1 = P1(t) and t ._2 = P2(t)
For values and types, (x ,y ,z) is shorthand for (x ,(y ,z))

Type rules

Rule for if:
Γ ⊢ b : Bool Γ ⊢ t1 :τ Γ ⊢ t2 :τ

Γ ⊢ (if (b) t1 else t2) :τ
Rules for variables:

Γ (x) =τ
Γ ⊢ x :τ

Rules for constants:

”...” : String true : Bool false : Bool

Rules for pairs

Γ ⊢ t1 :τ1 Γ ⊢ t2 :τ2
Γ ⊢ (t1,t2) : (τ1,τ2)

If the first component t1 has type τ1 and the second component t2 has type τ2 then
the pair (t1,t2) has the type (τ1,τ2).

Γ ⊢ t : (τ1,τ2)
Γ ⊢ t ._1 :τ1

Γ ⊢ t : (τ1,τ2)
Γ ⊢ t ._2 :τ2

Functions of one argument

Γ ⊢ f :τ⇒τ0 Γ ⊢ t :τ
Γ ⊢ f (t) :τ0

Why give rule for only one argument?
Note that τ can be a tuple (τ1, . . . ,τn), so we can derive:

Γ ⊢ t1 :τ1 . . . Γ ⊢ tn :τn Γ ⊢ f : (τ1, . . . ,τn)⇒τ0
Γ ⊢ (t1, . . . ,tn) : (τ1, . . . ,τn) Γ ⊢ f : (τ1, . . . ,τn)⇒τ0

Γ ⊢ f ((t1, . . . ,tn)) :τ0

Functions of one argument

Γ ⊢ f :τ⇒τ0 Γ ⊢ t :τ
Γ ⊢ f (t) :τ0

Why give rule for only one argument?

Note that τ can be a tuple (τ1, . . . ,τn), so we can derive:

Γ ⊢ t1 :τ1 . . . Γ ⊢ tn :τn Γ ⊢ f : (τ1, . . . ,τn)⇒τ0
Γ ⊢ (t1, . . . ,tn) : (τ1, . . . ,τn) Γ ⊢ f : (τ1, . . . ,τn)⇒τ0

Γ ⊢ f ((t1, . . . ,tn)) :τ0

Functions of one argument

Γ ⊢ f :τ⇒τ0 Γ ⊢ t :τ
Γ ⊢ f (t) :τ0

Why give rule for only one argument?
Note that τ can be a tuple (τ1, . . . ,τn), so we can derive:

Γ ⊢ t1 :τ1 . . . Γ ⊢ tn :τn Γ ⊢ f : (τ1, . . . ,τn)⇒τ0
Γ ⊢ (t1, . . . ,tn) : (τ1, . . . ,τn) Γ ⊢ f : (τ1, . . . ,τn)⇒τ0

Γ ⊢ f ((t1, . . . ,tn)) :τ0

Rules for anonymous function

Γ [x :=τ1] ⊢ t :τ2
Γ ⊢ (x ⇒ t) : (τ1⇒τ2)

What does this rule say?

Anonymous function x ⇒ t (maps value x to t), has a function type τ1⇒τ2, where
τ1 is the type of x and τ2 is the type of t.

Within t, there may be uses of x , which has some type τ1.
This is why Γ is extended with binding of x to τ1 when type checking t.

Rules for anonymous function

Γ [x :=τ1] ⊢ t :τ2
Γ ⊢ (x ⇒ t) : (τ1⇒τ2)

What does this rule say?
Anonymous function x ⇒ t (maps value x to t), has a function type τ1⇒τ2, where

τ1 is the type of x and τ2 is the type of t.

Within t, there may be uses of x , which has some type τ1.
This is why Γ is extended with binding of x to τ1 when type checking t.

Rules for anonymous function

Γ [x :=τ1] ⊢ t :τ2
Γ ⊢ (x ⇒ t) : (τ1⇒τ2)

What does this rule say?
Anonymous function x ⇒ t (maps value x to t), has a function type τ1⇒τ2, where
τ1 is the type of x and τ2 is the type of t.

Within t, there may be uses of x , which has some type τ1.
This is why Γ is extended with binding of x to τ1 when type checking t.

Rules for anonymous function

Γ [x :=τ1] ⊢ t :τ2
Γ ⊢ (x ⇒ t) : (τ1⇒τ2)

What does this rule say?
Anonymous function x ⇒ t (maps value x to t), has a function type τ1⇒τ2, where
τ1 is the type of x and τ2 is the type of t.

Within t, there may be uses of x , which has some type τ1.
This is why Γ is extended with binding of x to τ1 when type checking t.

Example for type inference

Program without type annotations:

def translatorFactory(dx, dy) = {
p ⇒ (p._1 + dx, p._2 + dy) F/ returns anonymous function

}
def upTranslator = translatorFactory(0, 100)
def test = upTranslator((3, 5)) F/ computes (3, 105)
Type inference can find types that correspond to this annotated program:

def translatorFactory(dx: Int, dy: Int): (Int,Int) ⇒ (Int,Int) = {
p ⇒ (p._1 + dx, p._2 + dy) }

def upTranslator : (Int,Int) ⇒ (Int,Int) = translatorFactory(0, 100)
def test: (Int,Int) = upTranslator((3, 5))

Example for type inference

Program without type annotations:

def translatorFactory(dx, dy) = {
p ⇒ (p._1 + dx, p._2 + dy) F/ returns anonymous function

}
def upTranslator = translatorFactory(0, 100)
def test = upTranslator((3, 5)) F/ computes (3, 105)
Type inference can find types that correspond to this annotated program:
def translatorFactory(dx: Int, dy: Int): (Int,Int) ⇒ (Int,Int) = {
p ⇒ (p._1 + dx, p._2 + dy) }

def upTranslator : (Int,Int) ⇒ (Int,Int) = translatorFactory(0, 100)
def test: (Int,Int) = upTranslator((3, 5))

Are the suggested types in this example correct?
def translatorFactory(dx: Int, dy: Int): (Int,Int) ⇒ (Int,Int) = {
p ⇒ (p._1 + dx, p._2 + dy) }

def upTranslator : (Int,Int) ⇒ (Int,Int) = translatorFactory(0, 100)
def test: (Int,Int) = upTranslator((3, 5))

Γ ⊢ p⇒ (p._1 + dx ,p._2 + dy) : (Int , Int)⇒ (Int , Int)

From bottom up to Hindley-Milner type inference

def translatorFactory(dx: Int, dy: Int): (Int,Int) ⇒ (Int,Int) = {
p ⇒ (p._1 + dx, p._2 + dy) }

def upTranslator : (Int,Int) ⇒ (Int,Int) = translatorFactory(0, 100)
def test: (Int,Int) = upTranslator((3, 5))
Example steps in type checking the body. Let Γ ′= Γ [p := (Int , Int)]

Γ ′ ⊢ p._1 : Int Γ ′ ⊢ dx : Int
Γ ′ ⊢ (p._1 + dx) : Int . . .

Γ ′ ⊢ (p._1 + dx ,p._2 + dy) : (Int , Int)
Γ ⊢ p⇒ (p._1 + dx ,p._2 + dy) : (Int , Int)⇒ (Int , Int)

How did type inference discover dx : Int? We construct the derivation tree keeping
type of dx symbolic until some derivation step tells us what it must be. Here, +
expects two integers in p._1 + dx

Generating Constraints During Type Inference
def translatorFactory(dx, dy) = {
p ⇒ (p._1 + dx, p._2 + dy)

}
Let Γ1 = Γ [p :=τp] where τp is to be determined later

Γ1 ⊢ p :τp τp = (τ3,τ4)
Γ1 ⊢ p._1 :τ3 Γ1 ⊢ dx :τdx Γ1 ⊢+ : (Int , Int)→ Int
Γ1 ⊢ p._1 + dx : τ1 τ3 = Int , τdx = Int , τ1 = Int
Γ1 ⊢ (p._1 + dx ,p._2 + dy) :τr τr = (τ1,τ2)

Γ ⊢ (p⇒ (p._1 + dx ,p._2 + dy)) :τfun τfun =τp⇒τr

Analogously, for the second component of the pair, we derive τ2 = Int, τ4 = Int on
other branches of the derivation tree.
From these constraints it follows τp = (Int , Int), τr = (Int , Int) and

τfun = (Int , Int)⇒ (Int , Int)

Generating Constraints During Type Inference
def translatorFactory(dx, dy) = {
p ⇒ (p._1 + dx, p._2 + dy)

}
Let Γ1 = Γ [p :=τp] where τp is to be determined later

Γ1 ⊢ p :τp τp = (τ3,τ4)
Γ1 ⊢ p._1 :τ3 Γ1 ⊢ dx :τdx Γ1 ⊢+ : (Int , Int)→ Int
Γ1 ⊢ p._1 + dx : τ1 τ3 = Int , τdx = Int , τ1 = Int
Γ1 ⊢ (p._1 + dx ,p._2 + dy) :τr τr = (τ1,τ2)

Γ ⊢ (p⇒ (p._1 + dx ,p._2 + dy)) :τfun τfun =τp⇒τr

Analogously, for the second component of the pair, we derive τ2 = Int, τ4 = Int on
other branches of the derivation tree.
From these constraints it follows τp = (Int , Int), τr = (Int , Int) and

τfun = (Int , Int)⇒ (Int , Int)

Constraints

Generate fresh type variable for (in principle) each AST node. Collect these constraints:

AST node node with type vars constraint
f (t) (f :τf)(t :τ) :τ0 τf = (τ⇒τ0)
x ⇒ t ((x :τx)⇒ (t :τt)) :τfun τfun = (τx ⇒τt) (x ,τx) added to Γ ′ for t
(t1,t2) (t1 :τ1,t2 :τ2) :τ τ= (τ1,τ2)
t ._1 (t :τ)._1 :τ1 τ= (τ1,τ2) τ2 is a fresh type variable
t ._2 (t :τ)._2 :τ2 τ= (τ1,τ2) τ1 is a fresh type variable
x x :τx Γ (x) =τx
false false :τ τ= Bool
true true :τ τ= Bool
k k :τ τ= Int
”...” ”...” :τ τ= String
(if (b :τb) t1 :τ1 else t2 :τ2) :τ τ=τ1,τ=τ2,τb = Bool

Summary of type inference

1. Introduce type variable for each tree node
2. For each tree node use type rules to derive constraints among the type variables
3. Solve the resulting set of equations on type variables

Solving equations on simple types: unification (as in Prolog)

Types in equations have the following syntax:

t :=τ | Int |Bool | String |Unit | (t1,t2) | (t1⇒ t2)

We assume that
▶ primitive types are disjoint and distinct from pairs and functions
▶ pairs and functions are always distinct
▶ two pairs are equal iff their corresponding component types are equal
▶ two functions are equal iff their argument and result types are equal

Idea: eliminate variables, decompose pair and function equalities.
Algorithm works for any term algebra (algebra of syntactic terms)
▶ Pair[A,B] and Function[A,B] are two distinct binary term constructors
▶ Int, Bool, String are distinct nullary constructors

Analogy: Solving Equations over Non-negative Integers

Use Gaussian elimination to solve the system of equations:

x + y + z = 5
x + 2y + z = 6
2x + y + 2z = 5

For example, we can express x and substitute:

x = 5− y − z
(5− y − z) + 2y + z = 6
2(5− y − z) + y + z = 5

i.e.,
x = 5− y − z
y = 1
y + z = 5

Here, y = 1,z = 4,x = 0 is unique solution.
There are systems with infinitely many solutions.
There are systems with no solutions.
Over non-negative integers, x = x + y + 1 has no solutions.

Unification Algorithm
Applies the following rules as long as they change the current set of equations:
(Let x denote a type variable and T a type term.)
Orient: Replace T = x with x = T when x is not a type variable
Delete useless: Remove T = T (both sides syntactically identical)
Eliminate: Given x = T where T does not contain x , replace x with T in all
remaining equations
Occurs check: Given x = T where T properly contains x , report clash (no solutions)
Decompose pairs: Replace (T1,T2) = (T ′1,T ′2) with two equations:

T1 = T ′1 and T2 = T ′2.
Decompose functions: Replace (T1⇒T2) = (T ′1⇒T ′2) with:

T1 = T ′1 and T2 = T ′2.
Decomposition clash (remaining cases): Given equality where two sides start with
different constructors report clash (no solution).

Examples: (T1,T2) = (T ′1⇒T ′2), Int = (T1,T2), Int = Bool , (T1⇒T2) = String
Franz Baader, Wayne Snyder: Unification Theory, In Handbook of Automated Reasoning, Chapter 8, Volume 1, MIT Press 2001.

Properties of Unification
Algorithm always terminates.
Running time is linear given the right data structures and with lazy substitution of
variables.

If it reports clash it means that equations have no solution (there exist no annotations
that make program type check).

Otherwise, the equations have one or more solutions. Note that a variable that appears
on left of equation does not appear on the right (else the eliminate rule would apply).
Call a variable that only appears on the right a parameter.
If there are no parameters, there is exactly one solution. Otherwise, for each
assignment of types to parameters we obtain a solution. Moreover, all solutions are
obtained by instantiating parameters.
Therefore, the result of the unification algorithm describes all possible ways to assign
simple types to the program.

Use the algorithm to infer the type of rightNest
def rightNest(t) = {
(t._1._1, (t._1._2, t._2))

}
def test1 = rightNest(((1, 2), 3)) F/ computes (1,(2,3))
Type variable for each sub-expression (same τ1 for same expression, to keep it short)�

((t :τ)._1 :τ1)._1 :τ2,
(((t :τ)._1 :τ1)._2 :τ3,(t :τ)._2 :τ4) :τ5

�
:τ6

τ= (τ1,τ10)
τ1 = (τ2,τ20)
τ= (τ1,τ30)
τ1 = (τ40,τ3)
τ= (τ50,τ4)
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= (τ1,τ10)
τ1 = (τ2,τ20)
(τ1,τ10) = (τ1,τ30)
τ1 = (τ40,τ3)
(τ1,τ10) = (τ50,τ4)
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= (τ1,τ10)
τ1 = (τ2,τ20)
τ1 =τ1,τ10 =τ30
τ1 = (τ40,τ3)
(τ1,τ10) = (τ50,τ4)
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

Applying Unification Rules Some More

τ= (τ1,τ10)
τ1 = (τ2,τ20)
τ10 =τ30
τ1 = (τ40,τ3)
(τ1,τ10) = (τ50,τ4)
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= (τ1,τ10)
τ1 = (τ2,τ20)
τ10 =τ30
τ1 = (τ40,τ3)
τ1 =τ50,τ10 =τ4
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= (τ1,τ4)
τ1 = (τ2,τ20)
τ4 =τ30
τ1 = (τ40,τ3)
τ1 =τ50,τ10 =τ4
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= (τ1,τ4)
τ1 = (τ2,τ20)
τ30 =τ4
τ1 = (τ40,τ3)
τ50 =τ1,τ10 =τ4
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= ((τ2,τ20),τ4)
τ1 = (τ2,τ20)
τ30 =τ4
(τ2,τ20) = (τ40,τ3)
τ50 = (τ2,τ20),τ10 =τ4
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= ((τ2,τ20),τ4)
τ1 = (τ2,τ20)
τ30 =τ4
τ2 =τ40,τ20 =τ3
τ50 = (τ2,τ20),τ10 =τ4
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

And More

τ= ((τ2,τ3),τ4)
τ1 = (τ2,τ3)
τ30 =τ4
τ2 =τ40,τ20 =τ3
τ50 = (τ2,τ3),τ10 =τ4
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= ((τ2,τ3),τ4)
τ1 = (τ2,τ3)
τ30 =τ4
τ40 =τ2,τ20 =τ3
τ50 = (τ2,τ3),τ10 =τ4
τ5 = (τ3,τ4)
τ6 = (τ2,τ5)

⇒

τ= ((τ2,τ3),τ4)
τ1 = (τ2,τ3)
τ30 =τ4
τ40 =τ2,τ20 =τ3
τ50 = (τ2,τ3),τ10 =τ4
τ5 = (τ3,τ4)
τ6 = (τ2,(τ3,τ4))

No more rule applies. Variables on
▶ right-hand sides: τ2,τ3,τ4
▶ left-hand sides: all others

The argument type is τ= ((τ2,τ3),τ4)
The result type is τ6 = (τ2,(τ3,τ4))
So, rightNest has type ((τ2,τ3),τ4)→ (τ2,(τ3,τ4))
The types τ2,τ3,τ4 can be picked arbitrarily—there are infinitely many solutions.

Adding Constraints for Function Call

We have:
rightNest : ((τ2,τ3),τ4)⇒ (τ2,(τ3,τ4))

Given a call rightNest(((1, 2), 3)), we add constraints equivalent to

(τ2,τ3),τ4) = ((Int , Int), Int)

Thus we conclude τ2 = Int ,τ3 = Int ,τ4 = Int. Given that

rightNest(((1,2),3)) : (τ2,(τ3,τ4))

we conclude
rightNest(((1,2),3)) : (Int ,(Int , Int))

What happens in this case?

def rightNest(t) = {
(t._1._1, (t._1._2, t._2))

}
def test1 = rightNest(((1, 2), 3))
def test2 = rightNest((false , true), false)

(τ2,τ3),τ4) = ((Int , Int), Int) because of test1
(τ2,τ3),τ4) = ((Bool ,Bool),Bool) because of test2

which implies Int = Bool and is contradictory.
Program fails to type check because the argument type of t becomes equal to both Int
and Bool, which is inconsistent.

This is a pity, because we could copy rightNest into rightNest2 with the same body as
rightNest, then call rightNest2((false, true), false), and everything would work. But
the new program executes the same as old.

More flexibility through generalization
def rightNest(t) = {
(t._1._1, (t._1._2, t._2))

}
def test1 = rightNest(((1, 2), 3))
def test2 = rightNest((false , true), false)
After completing the inference for rightNest, first generalize its free type variables into
a variable schema:

∀a,b,c . ((a,b),c))→ (a,(b,c))
Then, each time we use the function, replace quantified variables with fresh variables.
Use in test1:

((a1,b1),c1))→ (a1,(b1,c1))
a1 = Int, b1 = Int, c1 = Int
Use in test2:

((a2,b2),c2))→ (a2,(b2,c2))
a2 = Bool , b2 = Bool , c2 = Bool

More flexibility through generalization
def rightNest(t) = {
(t._1._1, (t._1._2, t._2))

}
def test1 = rightNest(((1, 2), 3))
def test2 = rightNest((false , true), false)
With this new approach, the program type checks and its types are inferred as follows:
def rightNest[A,B,C](t : ((A, B), C)) : (A, (B, C)) = {
(t._1._1, (t._1._2, t._2))

}

def test1 : (Int, (Int, Int)) =
rightNest[Int, Int, Int](((1, 2), 3))

def test2 : (Bool, (Bool, Bool))=
rightNest[Bool,Bool, Bool]((false , true), false)

