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Why types are good

Prevent errors: many simple errors are caught by types

Ensure memory safety or other desired properties

Document the program (purpose of parameters)

Make it easier to change program

Make compilation more efficient: remove checks, specialize operations



An unsound (broken) type system

A type system that aims to ensure some property but, in fact, fails.

For example: suppose we have a system that aims to ensure that if parameter is of
type Int, then it is only invoked with values of type Int. But we find a (tricky) program
that passes the type checker and ends up invoking the function with the reference to a
string. This is unsoundness.
Sometimes unsoundness is an intentional compromise:
É type casts in C
É covariance for function arguments and arrays

Often unintentional (unsoundness bugs in type systems), due to subtle interactions
between e.g. subtyping, generics, mutation, higher-order functions, recursion





–same paper, published in November 2016



Goal of today’s lecture

Explain that “expression has a type” is an inductively defined relation
Define precisely a small language:
É its abstract syntax (as certain math expressions)
É its operational semantics (interpreter written in math)
É its type rules

Show that our type system prevents certain kinds of errors



Background: inductively defined relations and sets
Define relation r ⊆Z×Z using these rules (x ,y range over Z):

(0,0) ∈ r (zero)

(x ,y) ∈ r
(x ,y +1) ∈ r (increase right)

(x ,y) ∈ r
(x +1,y +1) ∈ r (increase both)

(x ,y) ∈ r
(x −1,y −1) ∈ r (decrease both)

For which of the following relations r are all the above rules true?

É r = {(x ,y) | x = 0∨ y = 0} ? No (increase right)
É r = {(x ,y) | x ≤ 0∧0≤ y} ? No
É r =Z×Z ? Yes

What is the smallest r (wrt. ⊆) for which rules hold? ;? No. r = {(x ,y) | x ≤ y}
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Example derivation of (−3,−1) ∈ r
(0,0) ∈ r
(0,1) ∈ r
(0,2) ∈ r
(−1,1) ∈ r
(−2,0) ∈ r
(−3,−1) ∈ r

(0,0) ∈ r (zero)

(x ,y) ∈ r
(x ,y +1) ∈ r (increase right)

(x ,y) ∈ r
(x +1,y +1) ∈ r (increase both)

(x ,y) ∈ r
(x −1,y −1) ∈ r (decrease both)



Proof that our rules define {(x ,y) | x ≤ y}
Establish two directions:
É if there exists a derivation, then x ≤ y

Strategy: induction on derivation, go through each rule

É if x ≤ y then there exists a derivation
Strategy (problem-specific): we can find an algorithm that given x ,y finds
derivation tree (what is the algorithm?)

Example algorithm: start from (0,0), then
derive (0,y − x) in y − x steps of “increase right”,
then depending on whether x < 0 or x > 0 apply “increase both” or “decrease
both” rule |x | times.
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Context-Free Grammars as Inductively Defined Relations

Inductive definitions work on multiple relations as well
Context-free grammars: mutually defined sets of strings (sets are relations)
Each non-terminal corresponds to a set of strings. Let A= {a,b}
context-free grammar rule inductive rule (S ,N ⊆A∗)

S ::= aN

N ::= ϵ

N ::= aNNb

w ∈N
aw ∈ S

ϵ ∈N
w1 ∈N ,w2 ∈N
aw1w2b ∈N

Sets of first symbols for each non-terminal is also an inductively definable relation



Inductively defined relations

We can use inductive rules to define type systems, grammars, interpreters, . . .
We define a relation r using rules of the form

t1(x̄) ∈ r , . . . ,tn(x̄) ∈ r
t(x̄) ∈ r

where ti(x̄) ∈ r are assumptions and t(x̄) ∈ r is the conclusion.
When n= 0 (no assumptions), the rule is called an axiom.

A derivation tree has nodes marked by tuples t(ā) for some specific values ā of x̄ .
We define relation r as the set of all tuples for which there exists a derivation tree.
One can prove (in general case) that tuples for which there exists a derivation tree give
us precisely the smallest relation that satisfies the rules!



Amyli language

Tiny functional language that supports recursive functions.
Works only on integers and booleans.

(Initial) program is a pair (etop ,ttop) where
É etop is the top-level environment mapping function names to function definitions
É ttop is the top-level term (expression) that starts execution

Function definition for a given function name is a tuple of: parameter list x̄ , parameter
types τ̄, expression representing function body t, and result type τ0.

Expressions are formed by invoking primitive functions (+,−,≤,&&), invocations of
defined functions, or if expressions.
No local val definitions nor match. e will remain fixed



Amyli: abstract syntax of terms

t := true | false | cI | f (t1, . . . ,tn) | if (t) t1 else t2

where
É cI ∈Z denotes integer constant
É f denotes either application of a user-defined function or one of the primitive

operators



Program representation as a mathematical structure

pfact =(e, fact(2))
where environment e is defined by:

e(fact)=
�

n, (parameters)
Int , (their types)
if (n≤ 1) 1 else n ∗ fact(n−1), (body)
Int (result type)
)



Operational semantics of Amyli: if expression
Given a program with environment e, we specify the result of executing the program as
an inductively defined binary (infix) relation “ ” on expressions.
If the top-level expression becomes a constant after some number of steps of  , we
have computed the result: t ∗ c
Rules for if:

b  b′
(if (b) t1 else t2)  (if (b′) t1 else t2)

(if (true) t1 else t2)  t1

(if (false) t1 else t2)  t2

b,b′,t1,t2 range over expressions



Operational semantics of Amyli: primitives
Logical operators:

b1  b′1
(b1 && b2)  (b′1 && b2)

(true && b2)  b2

(false && b2)  false
Arithmetic:

k1  k ′1
(k1 +k2)  (k ′1 +k2)

k2  k ′2
(c +k2)  (c +k ′2)

c ∈Z

(c1 + c2)  c c1,c2,c ∈Z, c = c1 + c2



Operational semantics: user function f

If c1, . . . ,ci−1 are constants, then (as expected in call-by-value)

ti   t ′i
f (c1, . . . ,ci−1,ti , . . .)  f (c1, . . . ,ci−1,t ′i , . . .)

Let the environment e define f by e(f )= ((x1, . . . ,xn), τ̄,tf ,τ0)

É (x1, . . . ,xn) is the list of formal parameters of f
É tf is the body of the function f

Then we have a rule

f (c1, . . . ,cn)  tf [x1 := c1, . . . ,xn := cn]

In general, if t is term, then t[x1 := t1, . . . ,xn := tn] denotes result of substituting
(replacing) in t each variable xi by term ti .



Execution of factorial example program

pfact =(e, fact(2))
where e(fact)= (n, Int , if (n≤ 1) 1 else n ∗ fact(n−1), Int)

fact(2) 

if (2≤ 1) 1 else 2 ∗ fact(2−1) 
if (false) 1 else 2 ∗ fact(2−1) 
2 ∗ fact(2−1) 
2 ∗ fact(1) 
2 ∗ (if (1≤ 1) 1 else 1 ∗ fact(1−1)) 
2 ∗ (if (true) 1 else 1 ∗ fact(1−1)) 
2 ∗1 
2
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Getting stuck

If a term t makes no sense, we introduce no rule to define its evaluation, so there is no
t ′ such that t  t ′
Example: consider this top-level expression:

if (5) 3 else 7

the expression 5 cannot be evaluated further and is a constant, but there are no rules
for when condition of if is a number constant; there are only rules for boolean
constants.

Such terms, that are not constants and have no applicable rules, are called stuck,
because no further steps are possible.

Stuck terms indicate errors. Type checking is a way to detect them statically, without
trying to (dynamically) execute a program and see if it will get stuck or produce result.



Type Rules: Program

After the definition of operational semantics, we define type rules (also inductively).
Given initial program (e,t) define

Γ0 = {(f ,τ1× · · ·×τn→τ0) | (f ,_,(τ1, . . . ,τn),tf ,τ0) ∈ e}
We say program type checks iff:
(1) the top-level expression type checks:

Γ0 ` t :τ

and
(2) each function body type checks:

Γ0⊕{(x1,τ1), . . . ,(xn,τn)} ` tf :τ0

for each (f ,(x1, . . . ,xn),(τ1, . . . ,τn),tf ,τ0) ∈ e



Type Checking Rules

Γ ` b :Bool , Γ ` t1 :τ, Γ ` t2 :τ

Γ ` (if (b) t1 else t2) :τ

Γ ` f :τ1× · · ·×τn→τ0, Γ ` t1 :τ1, . . . , Γ ` tn :τn
Γ ` f (t1, . . . ,tn) :τ0

We treat primitives like applications of functions e.g.
+ : Int × Int→ Int
≤ : Int × Int→Bool
&& :Bool ×Bool→Bool



Soundness through progress and preservation
Soundness theorem: if program type checks, its evaluation does not get stuck.
Proof uses the following two lemmas (a common approach):
É progress: if a program type checks, it is not stuck: if

Γ ` t :τ

then either t is a constant (execution is done) or there exists t ′ such that t  t ′
É preservation: if a program type checks and makes one   step,

then the result again type checks
in our simple system: it type checks and has the same type: if

Γ ` t :τ

and t  t ′ then
Γ ` t ′ :τ



Proof of progress and preservation - case of if
We prove conjunction of progress and preservation by induction on term t such that
Γ ` t :τ. The operational semantics defines the non-error cases of an interpreter, which
enables case analysis. Consider if. By type checking rules, if can only type check if its
condition b type checks and has type Bool. By inductive hypothesis and progress
either b is constant or it can be reduced to a b′. If it is constant one of these rules
apply (so we get progress):

(if (true) t1 else t2)  t1

(if (false) t1 else t2)  t2

and the result, by type rule for if, has type τ (preservation). If b′ is not constant, the
assumption of the rule

b  b′
(if (b) t1 else t2)  (if (b′) t1 else t2)

applies, so t also makes progress. By preservation IH, b′ also has type Bool, so the
entire expression can be typed as τ re-using the type derivations for t1 and t2.



Progress and preservation - user defined functions

Following the cases of operational semantics, either all arguments of a function have
been evaluated to a constant, or some are not yet constant.
If they are not all constants, the case is as for the condition of if, and we establish
progress and preservation analogously.
Otherwise rule

f (c1, . . . ,cn)  tf [x1 := c1, . . . ,xn := cn]

applies, so progress is ensured. For preservation, we need to show

Γ ` tf [x1 := c1, . . . ,xn := cn] :τ (∗)
where e(f )= ((x1, . . . ,xn),(τ1, . . . ,τn),tf ,τ0) and tf is the body of f . According to
type rules τ=τ0 and Γ ` ci :τi .



Progress and preservation - substitution and types

Function f definition type checks, so Γ ′ ` tf :τ0 where Γ ′= Γ ⊕{(x1,τ1), . . . ,(xn,τn)}.
Consider the type derivation tree for tf and replace each use of Γ ′ ` xi :τi with
Γ ` ci :τi . The result is a type derivation for (∗):

Γ ` tf [x1 := c1, . . . ,xn := cn] :τ (∗)
Therefore, the preservation holds in this case as well.

Exercise: prove the above step that replacing variables with constants of the same type
transforms term that has type derivation with type τ into a term that again has a
derivation with type τ. Is there a more general statement?
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