
Chomsky’s Classification of Grammars

On Certain Formal Properties of Grammars
(N. Chomsky, INFORMATION AND CONTROL 9., 137-167 (1959)

type 0: arbitrary string-rewrite rules

equivalent to Turing machines!

e X b => e X e X => Y

type 1: context sensitive, RHS always larger

O(n)-space Turing machines

 a X b => a c X b

type 2: context free - one LHS nonterminal

type 3: regular grammars (regular languages)

Parsing Context-Free Grammars

Decidable even for type 1 grammars,

(by eliminating epsilons - Chomsky 1959)

We choose O(n3) CYK algorithm - simple

Better complexity possible:
General Context-Free Recognition in Less than Cubic Time, JOURNAL OF COMPUTER AND SYSTE

M SCIENCES 10, 308--315 (1975)

- problem reduced to matrix multiplication - n^k for k between 2 and 3

More practical algorithms known:
J. Earley An efficient context-free parsing algorithm, Ph.D. Thesis,

Carnegie Mellon University, Pittsburgh, PA (1968)

can be adapted so that it automatically works in quadratic or linear time

for better-behaved grammars

CYK Parsing Algorithm
C:

John Cocke and Jacob T. Schwartz (1970). Programming languages and their compilers:

Preliminary notes. Technical report, Courant Institute of Mathematical Sciences,

New York University.

Y:

Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n3.

Information and Control 10(2): 189–208.

K:

T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free

languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab,

Bedford, MA.

CYK Algorithm Can Handle

Ambiguity

Why Parse General Grammars

•General grammars can be ambiguous: for

some strings, there are multiple parser trees
•Can be impossible to make grammar

unambiguous
•Some languages are more complex than

simple programming languages
–mathematical formulas:

x = y /\ z ? (x=y) /\ z x = (y /\ z)
–natural language:

I saw the man with the telescope.
–future programming languages

Ambiguity 1

I saw the man with the telescope.

1)

2)

Ambiguity 2

Time flies like an arrow.

Indeed, time passes by quickly.

Those special “time flies” have an “arrow” as

their favorite food.

You should regularly measure how fast the

flies are flying, using a process that is much

like an arrow.

…

Two Steps in the Algorithm

1) Transform grammar to normal form

called Chomsky Normal Form

2) Parse input using transformed grammar

dynamic programming algorithm
“a method for solving complex problems by breaking them down into simpler steps.

It is applicable to problems exhibiting the properties of overlapping subproblems”

Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

S’ → ε | S (only for the start non-terminal)

Ni → t (names for terminals)

Ni → Nj Nk (just 2 non-terminals on RHS)

Decomposing long input:

find all ways to parse substrings of length 1,2,3,…

((() ()) ()) (())

Ni

Nk
Nj

Balanced Parentheses Grammar

Original grammar G

B → ε | B B | (B)

Modified grammar in Chomsky Normal Form:

B1 → ε | B B | O M | O C

B → B B | O M | O C

M → B C

O → '('

C → ')'

Terminals: ()

Nonterminals: B, B1, O, C, M, B

Parsing an Input

B1 → ε | B B | O M | O C

B → B B | O M | O C

M → B C

O → '('

C → ')'

O O C O C O C C1

2

3

4

5

6

(() () ())

1 2 3 4 5 6 8 9

Algorithm Idea

wpq – substring from p to q

dpq – all non-terminals that

 could expand to wpq

Initially dpp has Nw(p,p)

key step of the algorithm:

if X → Y Z is a rule,

 Y is in dp r , and

 Z is in d(r+1)q

then put X into dpq

 (p <= r < q),

in increasing value of (q-p)

Algorithm
INPUT: grammar G in Chomsky normal form
 word w to parse using G
OUTPUT: true iff (w in L(G))
N = |w|
var d : Array[N][N]
for p = 1 to N {
 d(p)(p) = {X | G contains X->w(p)}
 for q in {p + 1 .. N} d(p)(q) = {} }
for k = 2 to N // substring length
 for p = 0 to N-k // initial position
 for j = 1 to k-1 // length of first half
 val r = p+j-1; val q = p+k-1;
 for (X::=Y Z) in G
 if Y in d(p)(r) and Z in d(r+1)(q)
 d(p)(q) = d(p)(q) union {X}
return S in d(0)(N-1)

(() () ())

What is the running

time as a function of

grammar size and the

size of input?

O()

Number of Parse Trees

Let w denote word ()()()
–it has two parse trees

Give a lower bound on number of parse

trees of the word wn
 (n is positive integer)

w5 is the word

()()() ()()() ()()() ()()() ()()()

CYK represents all parse trees compactly
–can re-run algorithm to extract first parse tree,

or enumerate parse trees one by one

Conversion to Chomsky Normal Form

(CNF)

Steps: (not in the optimal order)
–remove unproductive symbols
–remove unreachable symbols
–remove epsilons (no non-start nullable symbols)
–remove single non-terminal productions

(unit productions) X::=Y
–reduce arity of every production to less than two
–make terminals occur alone on right-hand side

1) Unproductive non-terminals

What is funny about this grammar:

 stmt ::= identifier := identifier

 | while (expr) stmt

 | if (expr) stmt else stmt

 expr ::= term + term | term – term

 term ::= factor * factor

 factor ::= (expr)

There is no derivation of a sequence of tokens from expr

In every step will have at least one expr, term, or factor

If it cannot derive sequence of tokens we call it unproductive

1) Unproductive non-terminals

Productive symbols are obtained using these

two rules (what remains is unproductive)
–Terminals are productive

–If X::= s1 s2 … sn is a rule and each si is productive

then X is productive
Delete unproductive

symbols.

The language recognized by the

grammar will not change

2) Unreachable non-terminals

What is funny about this grammar with start

symbol ‘program’

 program ::= stmt | stmt program

 stmt ::= assignment | whileStmt

 assignment ::= expr = expr

 ifStmt ::= if (expr) stmt else stmt

 whileStmt ::= while (expr) stmt

 expr ::= identifier

No way to reach symbol ‘ifStmt’ from ‘program’

Can we formulate rules for reachable symbols ?

2) Unreachable non-terminals

Reachable terminals are obtained using the

following rules (the rest are unreachable)
–starting non-terminal is reachable (program)

–If X::= s1 s2 … sn is rule and

Delete unreachable nonterminals and their

productions

X is reachable then

every non-terminal in s1 s2 … sn is reachable

3) Removing Empty Strings

Ensure only top-level symbol can be nullable

 program ::= stmtSeq

 stmtSeq ::= stmt | stmt ; stmtSeq

 stmt ::= “” | assignment | whileStmt | blockStmt

 blockStmt ::= { stmtSeq }

 assignment ::= expr = expr

 whileStmt ::= while (expr) stmt

 expr ::= identifier

How to do it in this example?

3) Removing Empty Strings - Result

 program ::= “” | stmtSeq

 stmtSeq ::= stmt| stmt ; stmtSeq |

 | ; stmtSeq | stmt ; | ;

 stmt ::= assignment | whileStmt | blockStmt

 blockStmt ::= { stmtSeq } | { }

 assignment ::= expr = expr

 whileStmt ::= while (expr) stmt

 whileStmt ::= while (expr)

 expr ::= identifier

3) Removing Empty Strings - Algorithm

3) Removing Empty Strings

• Since stmtSeq is nullable, the rule

 blockStmt ::= { stmtSeq }

gives

 blockStmt ::= { stmtSeq } | { }

• Since stmtSeq and stmt are nullable, the rule

 stmtSeq ::= stmt | stmt ; stmtSeq

gives

 stmtSeq ::= stmt | stmt ; stmtSeq

 | ; stmtSeq | stmt ; | ;

4) Eliminating unit productions

• Single production is of the form

X ::=Y

where X,Y are non-terminals

 program ::= stmtSeq

 stmtSeq ::= stmt

 | stmt ; stmtSeq

 stmt ::= assignment | whileStmt

 assignment ::= expr = expr

 whileStmt ::= while (expr) stmt

4) Unit Production Elimination

Algorithm
• If there is a unit production

X ::=Y put an edge (X,Y) into graph

• If there is a path from X to Z in the graph, and

there is rule Z ::= s1 s2 … sn then add rule

X ::= s1 s2 … sn

At the end, remove all unit productions.

4) Eliminate unit productions - Result

 program ::= expr = expr | while (expr) stmt

 | stmt ; stmtSeq

 stmtSeq ::= expr = expr | while (expr) stmt

 | stmt ; stmtSeq

 stmt ::= expr = expr | while (expr) stmt

 assignment ::= expr = expr

 whileStmt ::= while (expr) stmt

5) Reducing Arity:

No more than 2 symbols on RHS

stmt ::= while (expr) stmt

becomes

stmt ::= while stmt1

stmt1 ::= (stmt2

stmt2 ::= expr stmt3

stmt3 ::=) stmt

6) A non-terminal for each terminal

stmt ::= while (expr) stmt

becomes

stmt ::= Nwhile stmt1

stmt1 ::= N(stmt2

stmt2 ::= expr stmt3

stmt3 ::= N) stmt

Nwhile ::= while

N(::= (

N) ::=)

Order of steps in conversion to CNF
1. remove unproductive symbols (optional)

2. remove unreachable symbols (optional)

3. make terminals occur alone on right-hand side

4. Reduce arity of every production to <= 2

5. remove epsilons

6. remove unit productions X::=Y

7. unproductive symbols

8. unreachable symbols

– What if we swap the steps 4 and 5 ?
• Potentially exponential blow-up in the # of productions

Ordering of

Unreachable / Unproductive symbols

S := B C | “”

C := D

D := a

R := r

First Unreachable then Unproductive

S := “”

C := D

D := a

S := B C | “”

C := D

D := a

S := B C | “”

C := D

D := C

R := r

First Unproductive then Unreachable

S := “”S := “”

C := D

D := a

R := r

Alternative to Chomsky form

We need not go all the way to Chomsky form

it is possible to directly parse arbitrary grammar

Key steps: (not in the optimal order)
– reduce arity of every production to less than two

(otherwise, worse than cubic in string input size)

Can be less efficient in grammar size, but still works

More algorithms for arbitrary grammars are variations:

Earley’s parsing algorithm (Earley, CACM 1970)

 GLR parsing algorithm (Lang, ICALP 1974, Deterministic

Techniques for Efficient Non-Deterministic Parsers)

 GLL algorithm

