
Chomsky’s Classification of Grammars

On Certain Formal Properties of Grammars
(N. Chomsky, INFORMATION AND CONTROL 9., 137-167 (1959) 

type 0: arbitrary string-rewrite rules

equivalent to Turing machines!

e X b => e X e X => Y

type 1: context sensitive, RHS always larger

O(n)-space Turing machines

     a X b => a c X b

type 2: context free - one LHS nonterminal

type 3: regular grammars (regular languages)



Parsing Context-Free Grammars

Decidable even for type 1 grammars, 

(by eliminating epsilons - Chomsky 1959)

We choose O(n3) CYK algorithm - simple

Better complexity possible:
General Context-Free Recognition in Less than Cubic Time, JOURNAL OF COMPUTER AND SYSTE

M SCIENCES 10, 308--315 (1975)
  

- problem reduced to matrix multiplication - n^k for k between 2 and 3

More practical algorithms known:
J. Earley An efficient context-free parsing algorithm, Ph.D. Thesis, 

Carnegie Mellon University, Pittsburgh, PA (1968)

can be adapted so that it automatically works in quadratic or linear time 

for better-behaved grammars



CYK Parsing Algorithm
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K:

T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free 
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CYK Algorithm Can Handle 

Ambiguity



Why Parse General Grammars

•General grammars can be ambiguous: for 

some strings, there are multiple parser trees
•Can be impossible to make grammar 

unambiguous
•Some languages are more complex than 

simple programming languages
–mathematical formulas: 

x = y /\ z ? (x=y) /\ z              x = (y /\ z)
–natural language:

I saw the man with the telescope.
–future programming languages



Ambiguity 1

I saw the man with the telescope.

1)

2)



Ambiguity 2

Time flies like an arrow.

Indeed, time passes by quickly.

Those special “time flies” have an “arrow” as 

their favorite food.

You should regularly measure how fast the 

flies are flying, using a process that is much 

like an arrow.

…



Two Steps in the Algorithm

1) Transform grammar to normal form

called Chomsky Normal Form

2) Parse input using transformed grammar

dynamic programming algorithm
“a method for solving complex problems by breaking them down into simpler steps. 

It is applicable to problems exhibiting the properties of overlapping subproblems”



Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

S’ → ε | S (only for the start non-terminal)

Ni → t (names for terminals)

Ni → Nj  Nk (just 2 non-terminals on RHS)

Decomposing long input:

find all ways to parse substrings of length 1,2,3,…

( ( ( ) ( ) ) ( ) ) ( ( ) )

Ni

Nk
Nj



Balanced Parentheses Grammar

Original grammar G

B → ε | B B | ( B )

Modified grammar in Chomsky Normal Form:

B1 → ε | B B | O M | O C

B  → B B | O M | O C

M → B C

O  → '(' 

C  → ')' 

Terminals: (  )  

Nonterminals:  B, B1, O, C, M, B



Parsing an Input

B1 → ε | B B | O M | O C

B  → B B | O M | O C

M → B C

O  → '(' 

C  → ')'

O O C O C O C C1

2

3

4

5

6

( ( ) ( ) ( ) )

1 2 3 4 5 6 8 9



Algorithm Idea

wpq – substring from p to q

dpq – all non-terminals that

         could expand to wpq

Initially  dpp has Nw(p,p)

key step of the algorithm:

if  X → Y Z  is a rule,

    Y is in dp r  , and

    Z is in d(r+1)q

then put X into dpq

 (p <= r < q), 

in increasing value of (q-p)



Algorithm
INPUT:  grammar G in Chomsky normal form 
               word w to parse using G
OUTPUT: true iff (w in L(G)) 
N = |w| 
var d : Array[N][N] 
for p = 1 to N { 
   d(p)(p) = {X | G contains X->w(p)} 
   for q in {p + 1 .. N} d(p)(q) = {} } 
for k = 2 to N // substring length 
  for p = 0 to N-k // initial position
    for j = 1 to k-1 // length of first half 
      val r = p+j-1; val q = p+k-1;
      for (X::=Y Z) in G
        if Y in d(p)(r) and Z in d(r+1)(q) 
           d(p)(q) = d(p)(q) union {X} 
return  S in d(0)(N-1)

( ( ) ( ) ( ) )

What is the running 

time as a function of 

grammar size and the 

size of input?

O(       )



Number of Parse Trees

Let w denote word ()()()
–it has two parse trees

Give a lower bound on number of parse 

trees of the word wn 
 (n is positive integer)

w5  is the word

()()() ()()() ()()() ()()() ()()()

CYK represents all parse trees compactly
–can re-run algorithm to extract first parse tree, 

or enumerate parse trees one by one



Conversion to Chomsky Normal Form

(CNF)

Steps: (not in the optimal order)
–remove unproductive symbols
–remove unreachable symbols
–remove epsilons (no non-start nullable symbols)
–remove single non-terminal productions 

(unit productions)   X::=Y
–reduce arity of every production to less than two
–make terminals occur alone on right-hand side



1) Unproductive non-terminals

What is funny about this grammar:

  stmt ::=  identifier := identifier

              | while (expr) stmt

              | if (expr) stmt else stmt

  expr ::= term + term | term – term 

  term ::= factor * factor

  factor ::= ( expr )

There is no derivation of a sequence of tokens from expr

In every step will have at least one expr, term, or factor

If it cannot derive sequence of tokens we call it unproductive



1) Unproductive non-terminals

Productive symbols are obtained using these 

two rules (what remains is unproductive)
–Terminals are productive

–If X::= s1 s2 … sn is a rule and each si is productive

then X is productive
Delete unproductive

symbols.

The language recognized by the 

grammar will not change



2) Unreachable non-terminals

What is funny about this grammar with start 

symbol ‘program’

  program ::= stmt | stmt program

  stmt ::= assignment | whileStmt

  assignment ::= expr = expr

  ifStmt ::= if (expr) stmt else stmt

  whileStmt ::= while (expr) stmt

  expr ::= identifier

No way to reach symbol ‘ifStmt’ from ‘program’

Can we formulate rules for reachable symbols ?



2) Unreachable non-terminals

Reachable terminals are obtained using the 

following rules (the rest are unreachable)
–starting non-terminal is reachable (program)

–If X::= s1 s2 … sn is rule and 

Delete unreachable nonterminals and their 

productions

X is reachable then

every non-terminal in s1 s2 … sn is reachable



3) Removing Empty Strings

Ensure only top-level symbol can be nullable

  program ::= stmtSeq

  stmtSeq ::= stmt | stmt ; stmtSeq

  stmt ::= “” | assignment | whileStmt | blockStmt

  blockStmt ::= { stmtSeq }

  assignment ::= expr = expr

  whileStmt ::= while (expr) stmt

  expr ::= identifier

How to do it in this example?



3) Removing Empty Strings - Result

  program ::= “” | stmtSeq 

  stmtSeq ::= stmt| stmt ; stmtSeq | 

                     | ; stmtSeq | stmt ; | ;

  stmt ::= assignment | whileStmt | blockStmt

  blockStmt ::= { stmtSeq } | { }

  assignment ::= expr = expr

  whileStmt ::= while (expr) stmt

  whileStmt ::= while (expr)

  expr ::= identifier



3) Removing Empty Strings - Algorithm

 



3) Removing Empty Strings

• Since stmtSeq is nullable, the rule

   blockStmt ::= { stmtSeq }

gives

   blockStmt ::=  { stmtSeq } | { }

• Since stmtSeq and stmt are nullable, the rule

   stmtSeq ::= stmt | stmt ; stmtSeq

gives

   stmtSeq ::= stmt | stmt ; stmtSeq  

      | ; stmtSeq | stmt ; | ;



4) Eliminating unit productions

• Single production is of the form

X ::=Y

where X,Y are non-terminals

  program ::= stmtSeq

  stmtSeq ::= stmt 

                    | stmt ; stmtSeq

  stmt ::= assignment | whileStmt

  assignment ::= expr = expr

  whileStmt ::= while (expr) stmt



4) Unit Production Elimination 

Algorithm
• If there is a unit production

X ::=Y put an edge (X,Y) into graph

• If there is a path from X to Z in the graph, and 

there is rule Z ::= s1 s2 … sn then add rule

X ::= s1 s2 … sn

At the end, remove all unit productions.



4) Eliminate unit productions - Result

  program ::= expr = expr | while (expr) stmt 

                    | stmt ; stmtSeq

  stmtSeq ::= expr = expr | while (expr) stmt 

                    | stmt ; stmtSeq

  stmt ::= expr = expr | while (expr) stmt 

  assignment ::= expr = expr

  whileStmt ::= while (expr) stmt  



5) Reducing Arity:

No more than 2 symbols on RHS

stmt ::= while (expr) stmt

becomes

stmt ::= while stmt1

stmt1 ::= ( stmt2

stmt2 ::= expr stmt3

stmt3 ::= ) stmt



6) A non-terminal for each terminal

stmt ::= while (expr) stmt

becomes

stmt ::= Nwhile stmt1

stmt1 ::= N( stmt2

stmt2 ::= expr stmt3

stmt3 ::= N) stmt

Nwhile ::= while

N( ::= (

N) ::= )



Order of steps in conversion to CNF 
1. remove unproductive symbols   (optional)

2. remove unreachable symbols (optional)

3. make terminals occur alone on right-hand side

4. Reduce arity of every production to <= 2

5. remove epsilons

6. remove unit productions X::=Y

7. unproductive symbols

8. unreachable symbols

– What if we swap the steps 4 and 5 ? 
• Potentially exponential blow-up in the # of productions



Ordering of 

Unreachable / Unproductive symbols

S := B C | “”

C := D  

D := a 

R := r

First Unreachable then Unproductive

S := “”

C := D  

D := a 

S := B C | “”

C := D  

D := a 

S := B C | “” 

C := D  

D := C

R := r

First Unproductive then Unreachable

S := “”S := “”

C := D  

D := a

R := r 



Alternative to Chomsky form

We need not go all the way to Chomsky form

it is possible to directly parse arbitrary grammar

Key steps: (not in the optimal order)
– reduce arity of every production to less than two

(otherwise, worse than cubic in string input size)

Can be less efficient in grammar size, but still works

More algorithms for arbitrary grammars are variations:

Earley’s parsing algorithm (Earley, CACM 1970)

     GLR parsing algorithm (Lang, ICALP 1974, Deterministic 

Techniques for Efficient Non-Deterministic Parsers)

     GLL algorithm


