Chomsky's Classification of Grammars

On Certain Formal Properties of Grammars

(N. Chomsky, INFORMATION AND CONTROL 9., 137-167 (1959)
type 0: arbitrary string-rewrite rules
equivalent to Turing machines!

$$
e \mathrm{X} b=>\text { e } X \quad \text { e } X=>Y
$$

type 1: context sensitive, RHS always larger
$\mathrm{O}(\mathrm{n})$-space Turing machines
$a \times b=>a c \times b$
type 2: context free - one LHS nonterminal
type 3: regular grammars (regular languages)

Parsing Context-Free Grammars

Decidable even for type 1 grammars, (by eliminating epsilons - Chomsky 1959)

We choose O(n^{3}) CYK algorithm - simple

Better complexity possible:

General Context-Free Recognition in Less than Cubic Time, JOURNAL OF COMPUTER AND SYSTE M SCIENCES 10, 308--315 (1975)

- problem reduced to matrix multiplication - $\mathrm{n}^{\wedge} \mathrm{k}$ for k between 2 and 3

More practical algorithms known:

J. Earley An efficient context-free parsing algorithm, Ph.D. Thesis,

Carnegie Mellon University, Pittsburgh, PA (1968)
can be adapted so that it automatically works in quadratic or linear time
for better-behaved grammars

CYK Parsing Algorithm

```
C:
John Cocke and Jacob T. Schwartz (1970). Programming languages and their compilers:
Preliminary notes. Technical report, Courant Institute of Mathematical Sciences,
New York University.
Y:
Daniel H. Younger (1967). Recognition and parsing of context-free languages in time n}\mp@subsup{n}{}{3}\mathrm{ .
Information and Control 10(2): 189-208.
```


K:

```
T. Kasami (1965). An efficient recognition and syntax-analysis algorithm for context-free languages. Scientific report AFCRL-65-758, Air Force Cambridge Research Lab, Bedford, MA.
```

CYK Algorithm Can Handle Ambiguity

Why Parse General Grammars

-General grammars can be ambiguous: for some strings, there are multiple parser trees

- Can be impossible to make grammar unambiguous
- Some languages are more complex than simple programming languages
-mathematical formulas:
$x=y \wedge z \quad(x=y) \wedge z \quad x=(y \wedge z)$
-natural language:
I saw the man with the telescope.
-future programming languages

Ambiguity 2

Time flies like an arrow.
Indeed, time passes by quickly.

Those special "time flies" have an "arrow" as their favorite food.

You should regularly measure how fast the flies are flying, using a process that is much like an arrow.

Two Steps in the Algorithm

1) Transform grammar to normal form called Chomsky Normal Form

2) Parse input using transformed grammar dynamic programming algorithm
"a method for solving complex problems by breaking them down into simpler steps.
It is applicable to problems exhibiting the properties of overlapping subproblems"

Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules: $S^{\prime} \rightarrow \varepsilon \mid S \quad$ (only for the start non-terminal) $N_{i} \rightarrow t \quad$ (names for terminals)
$N_{i} \rightarrow N_{j} N_{k} \quad$ (just 2 non-terminals on RHS)
Decomposing long input:

$$
N_{i}
$$

N_{j}

$$
N_{k}
$$

find all ways to parse substrings of length $1,2,3, \ldots$

Balanced Parentheses Grammar

Original grammar G

$$
B \rightarrow \varepsilon|B B|(B)
$$

Modified grammar in Chomsky Normal Form:

$$
\begin{aligned}
& \mathrm{B} 1 \rightarrow \varepsilon|\mathrm{~B}| \mathrm{OM} \mid \mathrm{OC} \\
& \mathrm{~B} \rightarrow \mathrm{~B}|\mathrm{O}| \mathrm{M} \mid \mathrm{OC} \\
& \mathrm{M} \rightarrow \mathrm{~B} \mathrm{C} \\
& \mathrm{O} \rightarrow '^{\prime}(' \\
& \left.\mathrm{C} \rightarrow '^{\prime}\right)^{\prime}
\end{aligned}
$$

Terminals: ()
Nonterminals: B, B1, O, C, M, B

Parsing an Input

$$
\begin{array}{lc}
B 1 \rightarrow \varepsilon|B B| O M \mid O C \\
B \rightarrow B B|O M| O C \\
M \rightarrow B C & 6 \\
O \rightarrow '(') & \\
\left.C \rightarrow '^{\prime}\right)^{\prime} & 5
\end{array}
$$

4

3

2

Algorithm Idea

```
w pq
dpq
    could expand to wow
Initially dpp has N
    key step of the algorithm:
if }X->YZ\mathrm{ is a rule,
        Y is in d}\mp@subsup{d}{pr}{}\mathrm{ , and
        Z is in d}\mp@subsup{d}{(r+1)q}{
then put X into d}\mp@subsup{\textrm{dq}}{\textrm{pq}}{
    (p<= r < q),
in increasing value of (q-p)
```


Algorithm

INPUT: grammar G in Chomsky normal form word w to parse using G
OUTPUT: true iff (w in L(G))
$N=|w|$
var d: Array[N][N]
for $\mathrm{p}=1$ to N
$d(p)(p)=\{X \mid G$ contains $X->w(p)\}$
for q in $\{p+1 . . N\} d(p)(q)=\{ \}\}$
for $\mathrm{k}=2$ to $\mathrm{N} / /$ substring length
for $\mathrm{p}=0$ to $\mathrm{N}-\mathrm{k} / /$ initial position
for $\mathrm{j}=1$ to $\mathrm{k}-1 / /$ length of first half
val $r=p+j-1 ;$ val $q=p+k-1$;
for $(X::=Y Z)$ in G
if Y in $d(p)(r)$ and Z in $d(r+1)(a)$ $d(p)(q)=d(p)(q)$ union $\{X\}$
return S in $\mathrm{d}(0)(\mathrm{N}-1)$

What is the running time as a function of grammar size and the size of input?

O()

Number of Parse Trees

Let w denote word ()()()
-it has two parse trees
Give a lower bound on number of parse trees of the word w^{n} (n is positive integer)
w^{5} is the word ()()() ()()() ()()()()()()()()

CYK represents all parse trees compactly -can re-run algorithm to extract first parse tree, or enumerate parse trees one by one

Conversion to Chomsky Normal Form (CNF)

Steps: (not in the optimal order)

-remove unproductive symbols
-remove unreachable symbols
-remove epsilons (no non-start nullable symbols)
-remove single non-terminal productions
(unit productions) $X::=Y$
-reduce arity of every production to less than two
-make terminals occur alone on right-hand side

1) Unproductive non-terminals

What is funny about this grammar: stmt ::= identifier := identifier
| while (expr) stmt
| if (expr) stmt else stmt
expr ::= term + term | term - term
term ::= factor * factor
factor ::= (expr)

There is no derivation of a sequence of tokens from expr
In every step will have at least one expr, term, or factor

If it cannot derive sequence of tokens we call it unproductive

1) Unproductive non-terminals

Productive symbols are obtained using these two rules (what remains is unproductive)
-Terminals are productive
-If $X::=s_{1} s_{2} \ldots \mathrm{~s}_{\mathrm{n}}$ is a rule and each s_{i} is productive then X is productive

Delete unproductive symbols.

The language recognized by the grammar will not change

2) Unreachable non-terminals

What is funny about this grammar with start symbol 'program'
program ::= stmt | stmt program stmt ::= assignment | whileStmt assignment ::= expr = expr
fifStmt ::= if (expr) stmt else stmt whileStmt ::= while (expr) stmt expr ::= identifier

No way to reach symbol 'ifStmt' from 'program'
Can we formulate rules for reachable symbols ?

2) Unreachable non-terminals

> Reachable terminals are obtained using the following rules (the rest are unreachable)
> -starting non-terminal is reachable (program) -If $X:=s_{1} s_{2} \ldots s_{n}$ is rule and X is reachable then every non-terminal in $s_{1} s_{2} \ldots s_{n}$ is reachable
> Delete unreachable nonterminals and their productions

3) Removing Empty Strings

Ensure only top-level symbol can be nullable

```
program ::= stmtSeq
stmtSeq ::= stmt | stmt ; stmtSeq
stmt ::= "" | assignment | whileStmt | blockStmt
blockStmt ::= { stmtSeq }
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
expr ::= identifier
```

How to do it in this example?

3) Removing Empty Strings - Result

```
program ::= "" | stmtSeq
stmtSeq ::= stmt| stmt ; stmtSeq |
    | ; stmtSeq| stmt;|;
stmt ::= assignment | whileStmt | blockStmt
blockStmt ::={ stmtSeq } | { }
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
whileStmt ::= while (expr)
expr ::= identifier
```

3) Removing Empty Strings - Algorithm

3) Removing Empty Strings

- Since stmtSeq is nullable, the rule blockStmt ::= \{ stmtSeq \}
gives
blockStmt ::= \{ stmtSeq \}|\{\}
- Since stmtSeq and stmt are nullable, the rule stmtSeq ::= stmt \| stmt ; stmtSeq gives
stmtSeq ::= stmt | stmt ; stmtSeq
|; stmtSeq | stmt; |;

4) Eliminating unit productions

- Single production is of the form

$$
X::=Y
$$

where X, Y are non-terminals

```
program ::= stmtSeq
stmtSeq ::= stmt
    | stmt ; stmtSeq
stmt ::= assignment | whileStmt
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
```


4) Unit Production Elimination Algorithm

- If there is a unit production
$\mathrm{X}::=\mathrm{Y}$ put an edge (X, Y) into graph
- If there is a path from X to Z in the graph, and there is rule $Z::=s_{1} s_{2} \ldots s_{n}$ then add rule

$$
X::=s_{1} s_{2} \ldots s_{n}
$$

At the end, remove all unit productions.

4) Eliminate unit productions - Result

```
program ::= expr = expr | while (expr) stmt
    | stmt ; stmtSeq
stmtSeq ::= expr = expr | while (expr) stmt
    | stmt ; stmtSeq
stmt ::= expr = expr | while (expr) stmt
assignment ::= expr = expr
whileStmt ::= while (expr) stmt
```


5) Reducing Arity:
 No more than 2 symbols on RHS

stmt ::= while (expr) stmt
becomes

$$
\begin{aligned}
& \text { stmt }::=\text { while stmt }_{1} \\
& \operatorname{stmt}_{1}::=\text { (stmt }_{2} \\
& \operatorname{stmt}_{2}::=\text { expr stmt }_{3} \\
& \operatorname{stmt}_{3}::=\text {) stmt }
\end{aligned}
$$

6) A non-terminal for each terminal

stmt ::= while (expr) stmt
becomes

$$
\begin{aligned}
& \text { stmt }::=N_{\text {while }} \text { stmt }_{1} \\
& \operatorname{stmt}_{1}::=\mathrm{N}_{1} \text { stmt }_{1} \\
& \operatorname{stmt}_{2}::=\text { expr stmt }_{3} \\
& \operatorname{stmt}_{3}::=\mathrm{N}_{1} \text { stmt } \\
& \mathrm{N}_{\text {while }}::=\text { while } \\
& \mathrm{N}_{\mathrm{c}}::=(\\
& \left.\mathrm{N}_{1}::=\right)
\end{aligned}
$$

Order of steps in conversion to CNF

1. remove unproductive symbols (optional)
2. remove unreachable symbols (optional)
3. make terminals occur alone on right-hand side
4. Reduce arity of every production to $<=2$
5. remove epsilons
6. remove unit productions $\mathrm{X}::=\mathrm{Y}$
7. unproductive symbols
8. unreachable symbols

- What if we swap the steps 4 and 5 ?
- Potentially exponential blow-up in the \# of productions

Ordering of

Unreachable / Unproductive symbols

First Unreachable then Unproductive

$$
\begin{aligned}
& S:=\left.\mathrm{B} \mathrm{C}\right|^{" \prime \prime} \\
& C:=D \\
& D:=a \\
& R:=r
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{S}:=\mathrm{B} \mathrm{C} \mid " " & \mathrm{~S}:=" » \\
\mathrm{C}:=\mathrm{D} & \mathrm{C}:=\mathrm{D} \\
\mathrm{D}:=\mathrm{a} & \mathrm{D}:=\mathrm{a}
\end{array}
$$

First Unproductive then Unreachable
$S:=\left.B C\right|^{" \prime}$
S:=""
S:=""
C:=D
C:= D
D:=C
D := a
R := r
R:= r

Alternative to Chomsky form

We need not go all the way to Chomsky form

it is possible to directly parse arbitrary grammar Key steps: (not in the optimal order)

- reduce arity of every production to less than two (otherwise, worse than cubic in string input size)
Can be less efficient in grammar size, but still works

More algorithms for arbitrary grammars are variations:
Earley's parsing algorithm (Earley, CACM 1970)
GLR parsing algorithm (Lang, ICALP 1974, Deterministic Techniques for Efficient Non-Deterministic Parsers)

GLL algorithm

