Expressive Power of Automata

For which of the following languages can you
find an automaton or regular expression:

- Sequence of open or closed parentheses of even
length? E.g. (), ((,), YO))(, ...
- as many digits before as after decimal point?

- Sequence of balanced parentheses
((()) () -balanced
())(() -notbalanced

- Comments from // until LF
- Nested comments like /* .../* */ ...*/

Expressive Power of Automata

For which of the following languages can you
find an automaton or regular expression:

- Sequence of open or closed parentheses of even

length? E.g. (), (()), JOD(, . <o
~ as many digits before as after decimal point?
- Sequence of balanced parentheses
((()) () -balanced ‘o0
())(() - not balanced
- Comments from // until LF °oo

- Nested comments like /* .../* */ ... */ ooo

Automaton that Claims to Recognize
{ab" | n>=0}
Make the automaton deterministic

Let the resulting DFA have K states, |Q|=K
Feed it a, aa, aaa, Let g, be state after reading a’
Qo> gy Ay -ee 5 Ui
This sequence has length K+1 -> a state must repeat
a4 = i, p>0
Then the automaton should accept a*Pb™*r .
But then it must also accept
ai bi+p
because it is in state after reading a' as after a'*®.
So it does not accept the given language.

Limitations of Regular Languages

® Every automaton can be made deterministic
® Automaton has finite memory, cannot count

® Deterministic automaton from a given state
pehaves always the same

® |f a string is too long, deterministic automaton
will repeat its behavior

Pumping Lemmma

If L is a regular language, then there exists a
positive integer p (the pumping length) such
that every string s € L for which |s| = p, can be
partitioned into three pieces, s = x y z, such that

yl| >0
xy| sp

* Vi>0.xyz e L

Let’'s try again: {a"b" |n>=0}

Finite State Automata are Limited

Let us use (context-free) grammars!

Context Free Grammar for a"b"

S:=¢ - first rule of this grammar
S:=aShb - second rule of this grammar.

Example of a derivation
S => aSb => aaSb b => aa aSb bb => aaabbb
Parse tree: leaves give us the result

Context-Free Grammars

G=(A,N,S,R)
®* A -terminals (alphabet for generated words w & A*)

®* N - non-terminals - symbols with (recursive) definitions

® Grammar rules in R are pairs (n,v), written
n:=v where
n & N is a non-terminal
v € (AU N)* - sequence of terminals and non-terminals
A derivation in G starts from the starting symbol S

® Each step replaces a non-terminal with one of its right
hand sides

Example from before: G = ({a,b}, {S}, S, {(S,e), (S,aSb)})

Parse Tree

Given a grammar G = (A, N, S, R), t is a parse tree of G
iff t is a node-labelled tree with ordered children that satisfies:

® rootislabeled by S

® |eaves are labelled by elements of A

® cach non-leaf node is labelled by an element of N

® for each non-leaf node labelled by n whose children left to right
are labelled by p,...p., we have a rule (n::=p,...p.) €ER

Yield of a parse tree t is the unique word in A* obtained by reading
the leaves of t from left to right

Language of a grammar G = words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)}
w EL(G) < dt. w=yield(t) A isParseTree(G,t)

isParseTree - easy to check condition, given t
Harder: know if for a word there exists a parse tree

Grammar Derivation

A derivation for G is any sequence of words p, €(A U N)*,whose:

® firstwordis$S

® each subsequent word is obtained from the previous one by
replacing one of its letters by right-hand side of arule inR :
p. =unv , (n:=q)ER,
pi+1 = qu

® [ast word has only letters from A

Each parse tree of a grammar has one or more derivations, which
result in expanding tree gradually from S

® Different orders of expanding non-terminals may generate the
same tree

® |[eftmost derivation: always expands leftmost non-terminal
®Rightmost derivation: always expands rightmost non-terminal

We abbreviate
S:=p
S:=q¢

as

S:=p|q

Remark

Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::=PQ
P::=a| aP
Q:=¢| aQb

Show a parse tree for aaaabb
Show at least two derivations that correspond to that tree.

Balanced Parentheses Grammar

Consider the language L consisting of precisely those
words consisting of parentheses “(“ and “)” that are
balanced (each parenthesis has the matching one)

® Example sequence of parentheses
((()) () - balanced, belongs to the language

())(() -notbalanced, does not belong

Exercise: give the grammar and example derivation for
the first string.

Balanced Parentheses Grammar

G, S:u=¢€]S5(S)S
G, Su=¢](S)S

G, S:u=¢g]S5(S)

G, S:u=¢€]|SS]|(S)

These all define the same language, the language
of balanced parentheses.

	More Questions
	More Questions
	Automaton that Claims to Recognize { anbn | n >= 0 }
	Limitations of Regular Languages
	Pumping Lemma
	Finite State Automata are Limited
	Context Free Grammar for anbn
	Context-Free Grammars
	Parse Tree
	Grammar Derivation
	Remark
	Example: Parse Tree vs Derivation
	Balanced Parentheses Grammar
	Balanced Parentheses Grammar

