
Expressive Power of Automata

For which of the following languages can you 
find an automaton or regular expression:
– Sequence of open or closed parentheses of even 

length? E.g. (), ((, )), )()))(, …
– as many digits  before as after decimal point?
– Sequence of balanced parentheses

( ( () )  ()) - balanced
  ( ) ) ( ( )  - not balanced

– Comments from // until LF
– Nested comments like     /*  ... /*   */  … */
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Automaton that Claims to Recognize
{ anbn  | n >= 0 }

Make the automaton deterministic

Let the resulting DFA have K states, |Q|=K

Feed it a, aa, aaa, …. Let qi be state after reading ai  

   q0 , q1 , q2 , ... , qK  

This sequence has length K+1 -> a state must repeat
 qi = qi+p p > 0

Then the automaton should accept ai+pbi+p .

But then it must also accept

ai bi+p  

because it is in state after reading ai as after ai+p.

So it does not accept the given language.



Limitations of Regular Languages

• Every automaton can be made deterministic
• Automaton has finite memory, cannot count
• Deterministic automaton from a given state 

behaves always the same
• If a string is too long, deterministic automaton 

will repeat its behavior



Pumping Lemma

If L is a regular language, then there exists a 
positive integer p (the pumping length) such 
that every string s ∈ L for which |s| ≥ p, can be 
partitioned into three pieces, s = x y z, such that
• |y| > 0
• |xy| ≤ p

• ∀i ≥ 0. xyiz  L∈

Let’s try again: { anbn  | n >= 0 }



Finite State Automata are Limited

Let us use (context-free) grammars!



Context Free Grammar for anbn

S ::= ε    - first rule of this grammar
S ::= a S b  - second rule of this grammar.

Example of a derivation

   S  =>  aSb  =>  a aSb b  =>  aa aSb bb => aaabbb

Parse tree: leaves give us the result



Context-Free Grammars

G = (A, N, S, R)
• A  - terminals (alphabet for generated words w  A*)∈
• N - non-terminals – symbols with (recursive) definitions
• Grammar rules in R are pairs (n,v), written

  n ::= v where
n  N is a non-terminal∈
v  (A U N)* - ∈ sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S
• Each step replaces a non-terminal with one of its right 

hand sides

Example from before:   G = ({a,b}, {S}, S, {(S,ε), (S,aSb)}) 



Parse Tree
Given a grammar G = (A, N, S, R), t is a parse tree of G 
iff t is a node-labelled tree with ordered children that satisfies:

• root is labeled by S 
• leaves are labelled by elements of A
• each non-leaf node is labelled by an element of N

• for each non-leaf node labelled by n whose children left to right 
are labelled by p1…pn, we have a rule (n::= p1…pn)  R∈

Yield of a parse tree t is the unique word in A* obtained by reading 
the leaves of t from left to right

Language of a grammar G = words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)} 
w L(G)         t.  w=yield(t)  isParseTree(G,t)∈ ⇔ ∃ ∧
isParseTree - easy to check condition, given t

Harder: know if for a word there exists a parse tree



Grammar Derivation
A derivation for G is any sequence of words pi (A U N)*,∈ whose:

• first word is S
• each subsequent word is obtained from the previous one by 

replacing one of its letters by right-hand side of a rule in R :
pi      = unv  ,   (n::=q) R,    ∈
pi+1 = uqv

• Last word has only letters from A

Each parse tree of a grammar has one or more derivations, which 
result in expanding tree gradually from S

• Different orders of expanding non-terminals may generate the 
same tree

• Leftmost derivation: always expands leftmost non-terminal
•Rightmost derivation: always expands rightmost non-terminal



Remark

We abbreviate

S ::= p

S ::= q

as

S ::= p | q



Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::= PQ
P ::= a | aP
Q ::= ε | aQb

Show a parse tree for   aaaabb
Show at least two derivations that correspond to that tree.



Balanced Parentheses Grammar

Consider the language L consisting of precisely those 
words consisting of parentheses “(“ and “)” that are 
balanced (each parenthesis has the matching one)
• Example sequence of parentheses

( ( () )  ()) - balanced, belongs to the language

  ( ) ) ( ( )  - not balanced, does not belong

Exercise: give the grammar and example derivation for 
the first string.



Balanced Parentheses Grammar

G1  S ::= ε | S(S)S

G2  S ::= ε | (S)S

G3  S ::= ε | S(S)

G4  S ::= ε | S S | (S)

These all define the same language, the language 
of balanced parentheses.
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