
Expressive Power of Automata

For which of the following languages can you
find an automaton or regular expression:
– Sequence of open or closed parentheses of even

length? E.g. (), ((,)),)()))(, …
– as many digits before as after decimal point?
– Sequence of balanced parentheses

((()) ()) - balanced
 ()) (() - not balanced

– Comments from // until LF
– Nested comments like /* ... /* */ … */

Expressive Power of Automata

For which of the following languages can you
find an automaton or regular expression:
– Sequence of open or closed parentheses of even

length? E.g. (), ((,)),)()))(, …
– as many digits before as after decimal point?
– Sequence of balanced parentheses

((()) ()) - balanced
 ()) (() - not balanced

– Comments from // until LF
– Nested comments like /* ... /* */ … */

yes

No

No

Yes

No

Automaton that Claims to Recognize
{ anbn | n >= 0 }

Make the automaton deterministic

Let the resulting DFA have K states, |Q|=K

Feed it a, aa, aaa, …. Let qi be state after reading ai

 q0 , q1 , q2 , ... , qK

This sequence has length K+1 -> a state must repeat
 qi = qi+p p > 0

Then the automaton should accept ai+pbi+p .

But then it must also accept

ai bi+p

because it is in state after reading ai as after ai+p.

So it does not accept the given language.

Limitations of Regular Languages

• Every automaton can be made deterministic
• Automaton has finite memory, cannot count
• Deterministic automaton from a given state

behaves always the same
• If a string is too long, deterministic automaton

will repeat its behavior

Pumping Lemma

If L is a regular language, then there exists a
positive integer p (the pumping length) such
that every string s ∈ L for which |s| ≥ p, can be
partitioned into three pieces, s = x y z, such that
• |y| > 0
• |xy| ≤ p

• ∀i ≥ 0. xyiz L∈

Let’s try again: { anbn | n >= 0 }

Finite State Automata are Limited

Let us use (context-free) grammars!

Context Free Grammar for anbn

S ::= ε - first rule of this grammar
S ::= a S b - second rule of this grammar.

Example of a derivation

 S => aSb => a aSb b => aa aSb bb => aaabbb

Parse tree: leaves give us the result

Context-Free Grammars

G = (A, N, S, R)
• A - terminals (alphabet for generated words w A*)∈
• N - non-terminals – symbols with (recursive) definitions
• Grammar rules in R are pairs (n,v), written

 n ::= v where
n N is a non-terminal∈
v (A U N)* - ∈ sequence of terminals and non-terminals

A derivation in G starts from the starting symbol S
• Each step replaces a non-terminal with one of its right

hand sides

Example from before: G = ({a,b}, {S}, S, {(S,ε), (S,aSb)})

Parse Tree
Given a grammar G = (A, N, S, R), t is a parse tree of G
iff t is a node-labelled tree with ordered children that satisfies:

• root is labeled by S
• leaves are labelled by elements of A
• each non-leaf node is labelled by an element of N

• for each non-leaf node labelled by n whose children left to right
are labelled by p1…pn, we have a rule (n::= p1…pn) R∈

Yield of a parse tree t is the unique word in A* obtained by reading
the leaves of t from left to right

Language of a grammar G = words of all yields of parse trees of G

L(G) = {yield(t) | isParseTree(G,t)}
w L(G) t. w=yield(t) isParseTree(G,t)∈ ⇔ ∃ ∧
isParseTree - easy to check condition, given t

Harder: know if for a word there exists a parse tree

Grammar Derivation
A derivation for G is any sequence of words pi (A U N)*,∈ whose:

• first word is S
• each subsequent word is obtained from the previous one by

replacing one of its letters by right-hand side of a rule in R :
pi = unv , (n::=q) R, ∈
pi+1 = uqv

• Last word has only letters from A

Each parse tree of a grammar has one or more derivations, which
result in expanding tree gradually from S

• Different orders of expanding non-terminals may generate the
same tree

• Leftmost derivation: always expands leftmost non-terminal
•Rightmost derivation: always expands rightmost non-terminal

Remark

We abbreviate

S ::= p

S ::= q

as

S ::= p | q

Example: Parse Tree vs Derivation
Consider this grammar G = ({a,b}, {S,P,Q}, S, R) where R is:

S ::= PQ
P ::= a | aP
Q ::= ε | aQb

Show a parse tree for aaaabb
Show at least two derivations that correspond to that tree.

Balanced Parentheses Grammar

Consider the language L consisting of precisely those
words consisting of parentheses “(“ and “)” that are
balanced (each parenthesis has the matching one)
• Example sequence of parentheses

((()) ()) - balanced, belongs to the language

 ()) (() - not balanced, does not belong

Exercise: give the grammar and example derivation for
the first string.

Balanced Parentheses Grammar

G1 S ::= ε | S(S)S

G2 S ::= ε | (S)S

G3 S ::= ε | S(S)

G4 S ::= ε | S S | (S)

These all define the same language, the language
of balanced parentheses.

	More Questions
	More Questions
	Automaton that Claims to Recognize { anbn | n >= 0 }
	Limitations of Regular Languages
	Pumping Lemma
	Finite State Automata are Limited
	Context Free Grammar for anbn
	Context-Free Grammars
	Parse Tree
	Grammar Derivation
	Remark
	Example: Parse Tree vs Derivation
	Balanced Parentheses Grammar
	Balanced Parentheses Grammar

