
Formal Languages: Concepts

▶ Alphabet (A) - any finite non-empty set of letters (used to write the input)
e.g. A= {0,1}, E = {a,b,c , . . . ,z}
▶ Word (w) (akka string) - finite sequence of letters (elements of the alphabet A)

w ∈A∗ (here A∗ is the set of all finite sequences of elements of A)
A∗= {ϵ,0,1,00,01,10,11,000,001, . . .} (all words)
We write sequence denoting a word by just writing one letter after another
ϵ is the word of length zero (empty string)
Length of the word |w | is the number of symbols (repetitions count): |01011|= 5
▶ Language (L) - a set of words (possibly empty, possibly infinite)

L⊆A∗
e.g. L1 = {1,11,111, . . .} (words of length one or more, containing only 1-s)
L2 = {ϵ,00,01,10,11,0000,0001,0010, . . .} (words of even length)
L3 = {0,101,111,00000} (finite language with these specific four words)



Definition of Words in Set Theory
Let A be the alphabet. We define words of length n, denoted An

Definition: A0 = {ϵ} (only one word of length zero, always denoted ϵ)
For n> 0, An = {f | f : {0, . . . ,n−1}→A}
A non-empty word is just a function that tells us what the letters are and in which
order.
For w = 1011 we thus have:
w(0)= 1 w(1)= 0 w(2)= 1 w(3)= 1

( We also write the pretty w(i) instead of w(i) )
Set of all words:

A∗=
⋃
n≥0

An

which means: w ∈A∗ if and only iff there exists n such that w ∈An.
Note: sometimes people represent e.g. 1011 as (1,0,1,1), but we can think of n-tuple
as a function {0, . . . ,n−1}→A, so that is equivalent.



Word Equality

Words are equal when they have same length and same letters in the same order:

Let u,v ∈A∗. Then

u = v if and only if both
1. |u|= |v | and
2. for all i where 0≤ i < |u| we have u(i)= v(i)



Words as Scala Lists
sealed abstract class List[A] { F/ A is the alphabet
def F:(t:A): List[A] = Cons(t, this)
def length: BigInt = this match {
case Nil() F> BigInt(0)
case Cons(h, t) F> 1 + t.length }

def apply(index: BigInt): A = {
this match {
case Cons(h,t) F>
if (index F= BigInt(0)) h
else t(index-1) } }

}
case class Nil[A]() extends List[A]
case class Cons[A](h: A, t: List[A]) extends List[A]

val w = 1 F: 0 F: 1 F: 1 F: Nil[Int]() F/ 1011
val n = w.length F/ 4
val z = w(1) F/ 0



Words as Inductive Structures

If a ∈A and u ∈A∗, let a ·u denote the word that starts with a and then follows with
symbols from u (like Cons).

Theorem (Decomposing a word)
Given w ∈A∗, either w = ϵ or w = a · v where a ∈A and v ∈A∗.

Theorem (Equality)
Given u,v ∈A∗ we have u = v if and only if one of the following conditions hold:
▶ u = ϵ and v = ϵ.
▶ there exists a ∈A and u′,v ′ ∈A∗ such that u = a ·u′, v = a · v ′ and u′= v ′.

Theorem (Structural induction for words)
Given a property of words P :A∗→{true, false}, if P(ϵ) and, if for every letter a ∈A
and every u, if P(u) then P(a ·u), then ∀u ∈A∗.P(u).



Each Word is Finite. The Set of All of Them is Infinite
Each word has a finite length, and each symbol is an element from a finite set. Thus,
each word is a finite object that can be written down using finitely many bits.
That set of all words is countably infinite: it is as big as the set of natural numbers.
For example, if A= {1} then each word is of the form 1 . . .1 and is uniquely given by its
length n. Thus, there is a bijection between such words and non-negative integers n,
which, by definition, means that these two sets have the same cardinality. Similarly, if
A= {0,1}, we have a bijection between positive integers and words over A: given a
word of length n of the form k1 . . .kn we can assign it to a strictly positive integer
whose binary number representation is

1k1 . . .kn

Such mapping establishes a bijection between A∗ and postitive integers. More
generally, we can show that, for any alphabet A the set of all words A∗ is a countably
infinite set. Intuitively, we can take any total ordering on A and use it to sort all words
as in a dictionary. This defines a bijection with non-negative integers.



Concatenation

Concatenation is a fundamental operation on words, and denotes putting the words of
one word after another. For example, concatenating words 01 and 10, denoted 01 ·10,
results in the word 0110.
Concatenation of u = u(0) . . .u(n−1) and v = v(0) . . .v(m−1), denoted u ·v , or uv for short,
is the word

u(0) . . .u(n−1)v(0) . . .v(m−1)

Definition
u · v is the unique word w such that |w |= |u|+ |v | and for all i where 0≤ i < |w |,

w(i)=

�
u(i), if 0≤ i < |u|

v(i−|u|), if |u| ≤ i < |u|+ |v |

Note that it follows: w · ϵ=w and ϵ ·w =w



Associativity of Concatenation

Theorem
For all u,v ,w ∈A,

u · (v ·w)= (u · v) ·w
First, we show that the two words have the same length. Indeed,
|u · (v ·w)|= |u|+ |v ·w |= |u|+ |v |+ |w | and likewise
|(u · v) ·w |= |u · v |+ |w |= |u|+ |v |+ |w |.
Next, we show that the letters are same at all positions i where 0≤ i < |u|+ |v |+ |w |.
Pick any such i . There are three cases, depending on the interval to which i belongs.
Case i < |u|. We have (u · (v ·w))(i)= u(i) by the definition of concatenation.
Similarly, because i < |u · v |, we have that likewise ((u · v) ·w)(i)=(u · v)(i)= u(i).
Case |u| ≤ i < |u|+ |v |. We have (u · (v ·w))(i)=(v ·w)i−|u|= vi−|u| and also
((u · v) ·w)(i)=(u · v)i = vi−|u|.
Case |u|+ |v | ≤ i . We have (u · (v ·w))(i)=(v ·w)i−|u|=wi−|u|−|v | and also
((u · v) ·w)(i)=wi−|u·v |=wi−|u|−|v |.



Free Monoid of Words

The neutral element and associativity law imply that the structure (A∗, ·,ϵ) is an
algebraic structure called monoid. The monoid of words is called the free monoid.
Word monoid satisfies, among others, the following additional properties (which do not
hold in all monoids).

Theorem (Left cancellation law)
For every three words u,v ,w ∈A∗, if wu =wv, then u = v.

Theorem (Right cancellation law)
For every three words u,v ,w ∈A∗, if uw = vw, then u = v.



Reversal
Reversal of a word is a word of same length with symbols but in the reverse order.
Example: the reversal of the word 011, denoted (011)−1, is the word 110.

Definition
Given w ∈A∗, its reversal w−1 is the unique word such that |w−1|= |w | and
w−1
(i) =w(|w |−1−i) for all i where 0≤ i < |w |.

From definition it follows that ϵ−1 = ϵ and that a−1 = a for all a ∈A.

Theorem
For all u,v ∈A∗, (u−1)−1 = u and (uv)−1 = v−1u−1.
Every law about words has a dual version.
Here is the dual of induction principle, where we peel of last elements.

Theorem (Structural induction for words (dual))
Given a property of words P :A∗→{true, false}, if P(ϵ) and, if for every letter a ∈A
and every u, if P(u) then P(u ·a), then ∀u ∈A∗.P(u).



Prefix, Postfix, and Slice

Definition
Let u,v ,w ∈A∗ such that uv =w . We then say that u is a prefix of w and that v is a
suffix of w .

Definition
Given a word w ∈A∗ and two integers p,q such that 0≤ p ≤ q ≤ |w |, the [p,q)-slice of
w , denoted w[p,q), is the word u such that |u|= q−p and u(i)=w(p+i) for all i where
0≤ i < q−p.

Theorem
Let w ∈A∗ and u =w[p,q) where 0≤ p ≤ q ≤ |w |. Then the exist words x ,y ∈A∗ such
that |x |= p, |y |= |w | −q, and w = xuy.

Theorem
Let w ,u,x ,y ∈A∗ and w = xuy. Then x =w[0,|x |), u =w[|x |,|x |+|u|) and v =w[|x |+|u|,|w |).



Slice in Scala

w ∈A∗, 0≤ p ≤ q ≤ |w |, [p,q)-slice of w , denoted w[p,q), is u such that |u|= q−p and
u(i)=w(p+i) for all i where 0≤ i < q−p.

def slice(i: BigInt, j: BigInt): List[T] = {
require(0 <= i F& i <= j F& j <= length)
this match {
case Nil() F> Nil()
case Cons(h,t) F>
if (i F= 0 F& j F= 0) Nil()
else if (i F= 0) Cons(h, t.slice(0, j-1))
else t.slice(i-1, j-1)

}
} ensuring(_.size F= j - i)


