
Computer Language Processing (CS-320)

Viktor Kuncak, EPFL

https://lara.epfl.ch/w/cc

https://lara.epfl.ch/w/cc

Computer Language Processing = ?

A language can be:
▶ natural language (English, French, . . .)
▶ computer language (Scala, Java, C, SQL, . . .)
▶ language used to write mathematical statements: ∀ϵ.∃δ.∀x . (|x |<δ⇒ |f (x)|< ϵ|)

We can define languages mathematically as sets of strings

We can process languages: define algorithms working on strings

In this course we study algorithms to process computer languages

Interpreters and Compilers

We are particularly interested in processing general-purpose programming languages.

Two main approaches:
▶ interpreter: execute instructions while traversing the program (Python)
▶ compiler: traverse program, generate executable code to run later (Rust, C)

Portable compiler (Java, Scala, C#):
▶ compile (javac) to platform-independent bytecode (.class)
▶ use a combination of interpretation and compilation to run bytecode (java)
▶ compile or interpret fast, determine important code fragments (inner loops)
▶ optimize important code and swap it in for subsequent iterations

Compilers for Programming Languages

A typical compiler processes a Turing-complete programming language and translates
it into the form where it can be efficiently executed (e.g. machine code).

Source code in a programming language

↓ compiler

machine code

▶ gcc, clang: map C into machine instructions
▶ Java compiler: map Java source into bytecodes (.class files)
▶ Just-in-time (JIT) compiler inside the Java Virtual Machine (JVM): translate

.class files into machine instructions (while running the program)

Java compiler (javac) and JIT compiler (java)

class Counter {
public static void main(FF.) {
int i = 0; int j = 0;
while (i < 10) {
System.out.println(j);
i = i + 2;
j = j + 2*i + 1; }}}

↓ javac -g
Counter.class bytecode

cafe babe 0000 0034
0018 0a00 0500 0b09
000c 000d 0a00 0e00
0f07 0010 0700 1101

java−→
0
5
14
27
44

Inside a Java class file

class Counter {
public static void main(FF.) {
int i = 0; int j = 0;
while (i < 10) {
System.out.println(j);
i = i + 2;
j = j + 2*i + 1; }}}

↓ javac
Counter.class bytecode

cafe babe 0000 0034
0018 0a00 0500 0b09
000c 000d 0a00 0e00
0f07 0010 0700 1101

javap -c−−−−−→

0: iconst_0
1: istore_1
2: iconst_0
3: istore_2
4: iload_1
5: bipush 10
7: if_icmpge 32

FF.
21: iload_2
22: iconst_2
23: iload_1
24: imul
25: iadd
26: iconst_1
27: iadd
28: istore_2
29: goto 4
32: return

Compilers are Important

Source code (e.g. Scala, Java, C, C++, Python)
▶ designed to be easy for programmers to use
▶ should correspond to way programmers think and help them be productive: avoid

errors, write at a higher level, use abstractions, interfaces
Target code (e.g. x86, arm, JVM, .NET)
▶ designed to efficiently run on hardware
▶ low level
▶ fast to execute, low power use

Compilers bridge these two worlds
▶ essential for building complex, performant software

Some Skills and Knowledge Learned in the Course

▶ Develop a compiler for a functional language
▶ Write a compiler from start to end
▶ Generates Web Assembly
▶ generated code runs in browser or in nodejs

▶ libraries (e.g. parsing combinators) to build compilers: using and making them
▶ Analyze complex text
▶ Automatically detecting errors in code:
▶ type checking
▶ abstract interpretation

▶ (byte)code generation
▶ Foundations: automata, regular expressions, grammars, parsing

Examples of the Use of This Knowledge

▶ understand how compilers work, use them and choose them better
▶ gain experience with building complex software
▶ build compiler for your next great language
▶ extend language with a new construct you need
▶ adapt existing compiler to new target platform

(e.g. embedded CPU or graphics processor)
▶ regular expression handling in editors and search tools
▶ analyze HTML pages
▶ process complex input boxes in your applications

(make own spreadsheet software, expression evaluators)
▶ process LaTeX, build computer algebra system or a proof assistant
▶ parse simple natural language fragments

Compilers Bridge the Source-Target Gap in Phases

characters res = 14 + arg * 3
↓ lexical analyzer
words res = 14 + arg * 3
↓ parser
trees Assign(res, Plus(C(14), Times(V(arg),C(3))))
↓ name analyzer
graphs (variables mapped to declarations)
↓ type checker
graphs Assign(res:Int, Plus(C(14), Times(V(arg):Int,C(3)))):Unit
↓ intermediate code generator
intermediate code e.g. LLVM bitcode, JVM bytecode, Web Assembly
↓ JIT compiler or platform-specific back end
machine code e.g. x86, ARM, RISC-V

Front End and Back End
ba

ck
en

d
fro

nt
en

d characters
↓ lexical analyzer
words
↓ parser
trees
↓ name analyzer
graphs
↓ type checker
graphs
↓ intermediate code generator
intermediate code
↓ JIT compiler or platform-specific back end
machine code e.g. x86, ARM, RISC-V

Benefits of modularity:
▶ do one thing in one phase
▶ swap different front-end: add

languages
(C or Rust, Java or Scala)
▶ swap different back-end: add

various architectures
(Linux on x86 and ARM)

Interpreters

characters
↓ lexical analyzer
words
↓ parser
trees ←−−−−−−−−−−−−−−−−−−− program input
↓
program result

Comparison to a compiler:
▶ same front end: front end techniques apply to interpreters
▶ no back end: compute result using trees and graphs

Program Trees are Crucial for Interpreters and Compilers

We call a program tree Abstract Syntax Tree (AST)
▶ a language implementation today that does not use AST-s is a joke

Structure of trees:
▶ Nodes represent arithmetic operations, statements, blocks
▶ Leaves represent constants, variables, methods

Representation of trees:
▶ classes in object-oriented languages
▶ algebraic data types in functional languages like Haskell, ML

A Simple AST Definition in Scala
abstract class Expression
case class C(n: Int) extends Expression F/ constant
case class V(s: String) extends Expression F/ variable
case class Plus(e1: Expression, e2: Expression) extends Expression
case class Times(e1: Expression, e2: Expression) extends Expression

abstract class Statement
case class Assign(id:String, e:Expression) extends Statement
case class Block(s: List[Statement]) extends Statement

val program = Assign("res", Plus(C(14), Times(V("arg"),C(3))))

Transforming Text Into a Tree

characters res = 14 + arg * 3
↓ lexical analyzer
words res = 14 + arg * 3
↓ parser
trees Assign(res, Plus(C(14), Times(V(arg),C(3))))

First two phases:
1. lexical analyzer (lexer): sequence of characters → sequence of words
2. syntax analyzer (parser): sequence of words → tree

We will study linear-time algorithms for these problems.

We start with the underlying theory of formal languages.

