
Register Machines
Better for most purposes than stack machines

– closer to modern CPUs (RISC architecture)
– closer to control-flow graphs

– simpler than stack machine (but register set is finite)

Examples:
 ARM architecture

 RISC V: http://riscv.org/

Directly Addressable
RAM

large - slow even with cache

R0,R1,…,R31
A few fast
registers

http://en.wikipedia.org/wiki/ARM%20architecture
http://riscv.org/

Basic Instructions of Register Machines

Ri ← m[Rj] load

m[Rj] ← Ri store

Ri ← Rj * Rk compute for an operation *

Efficient register machine code uses as few loads
and stores as possible.

State Mapped to Register Machine
Both dynamically allocated heap and stack expand
Heap is more general:
• Can allocate, read/write, deallocate, in any order
• Garbage Collector does deallocation automatically

– Must be able to find free space among used one, group
free blocks into larger ones (compaction),…

Stack is efficient: top of stack pointer (SP) is a register
• allocation is simple: increment, decrement
• to allocate N bytes on stack (push): SP := SP - N
• to deallocate N bytes on stack (pop): SP := SP + N

Stack

Heap

Constants

Static Globals

free memory

SP

0
50kb

10MB

Exact picture varies
depend on hardware,
OS, language runtime

1 GB

WASM vs General Register Machine Code
Naïve Correct Translation

R1 ← m[SP]

SP = SP + 4

R2 ← m[SP]

R2 ← R1 * R2

m[SP] ← R2

imul.32
WASM: Register Machine:

	Slide 1
	Slide 2
	Slide 3
	Slide 4

