
Getting stuck

If a term t makes no sense, we introduce no rule to define its evaluation, so there is no
t � such that t� t �
Example: consider this top-level expression:

if (5) 3 else 7

the expression 5 cannot be evaluated further and is a constant, but there are no rules
for when condition of if is a number constant; there are only rules for boolean
constants.

Such terms, that are not constants and have no applicable rules, are called stuck,
because no further steps are possible.

Stuck terms indicate errors. Type checking is a way to detect them statically, without
trying to (dynamically) execute a program and see if it will get stuck or produce result.



Type Rules: Program
After the definition of operational semantics, we define type rules (also inductively).
Given initial program (e,t) define

Γ0 = {(f ,τ1× · · · ×τn→ τ0) | (f ,_,(τ1, . . . ,τn),tf ,τ0) ∈ e}

We say program type checks iff:
(1) the top-level expression type checks:

Γ0 � t :τ

and
(2) each function body type checks:

Γ0⊕ {(x1,τ1), . . . ,(xn,τn)} � tf :τ0

for each (f ,(x1, . . . ,xn),(τ1, . . . ,τn),tf ,τ0) ∈ e



Type Checking Rules

Γ � b :Bool , Γ � t1 :τ, Γ � t2 :τ

Γ � (if (b) t1 else t2) : τ

Γ � f :τ1× · · · ×τn→ τ0, Γ � t1 :τ1, . . . , Γ � tn :τn
Γ � f (t1, . . . ,tn) : τ0

We treat primitives like applications of functions e.g.
+ : Int × Int→ Int
≤ : Int × Int→Bool
&& :Bool ×Bool→Bool



Soundness through progress and preservation
Soundness theorem: if program type checks, its evaluation does not get stuck.
Proof uses the following two lemmas (a common approach):
� progress: if a program type checks, it is not stuck: if

Γ � t :τ

then either t is a constant (execution is done) or there exists t � such that t� t �
� preservation: if a program type checks and makes one � step,

then the result again type checks
in our simple system: it type checks and has the same type: if

Γ � t :τ

and t� t � then
Γ � t � :τ



Proof of progress and preservation - case of if
We prove conjunction of progress and preservation by induction on term t such that
Γ � t :τ. The operational semantics defines the non-error cases of an interpreter, which
enables case analysis. Consider if. By type checking rules, if can only type check if its
condition b type checks and has type Bool. By inductive hypothesis and progress
either b is constant or it can be reduced to a b�. If it is constant one of these rules
apply (so we get progress):

(if (true) t1 else t2)� t1

(if (false) t1 else t2)� t2
and the result, by type rule for if, has type τ (preservation). If b� is not constant, the
assumption of the rule

b� b�
(if (b) t1 else t2)� (if (b�) t1 else t2)

applies, so t also makes progress. By preservation IH, b � also has type Bool, so the
entire expression can be typed as τ re-using the type derivations for t1 and t2.



Progress and preservation - user defined functions

Following the cases of operational semantics, either all arguments of a function have
been evaluated to a constant, or some are not yet constant.
If they are not all constants, the case is as for the condition of if, and we establish
progress and preservation analogously.
Otherwise rule

f (c1, . . . ,cn)� tf [x1 := c1, . . . ,xn := cn]

applies, so progress is ensured. For preservation, we need to show

Γ � tf [x1 := c1, . . . ,xn := cn] : τ (∗)

where e(f )= ((x1, . . . ,xn),(τ1, . . . ,τn),tf ,τ0) and tf is the body of f . According to
type rules τ=τ0 and Γ � ci :τi .



Progress and preservation - substitution and types

Function f definition type checks, so Γ � � tf :τ0 where Γ �= Γ ⊕ {(x1,τ1), . . . ,(xn,τn)}.
Consider the type derivation tree for tf and replace each use of Γ � � xi :τi with
Γ � ci :τi . The result is a type derivation for (∗):

Γ � tf [x1 := c1, . . . ,xn := cn] : τ (∗)

Therefore, the preservation holds in this case as well.



Progress and preservation - substitution and types

Function f definition type checks, so Γ � � tf :τ0 where Γ �= Γ ⊕ {(x1,τ1), . . . ,(xn,τn)}.
Consider the type derivation tree for tf and replace each use of Γ � � xi :τi with
Γ � ci :τi . The result is a type derivation for (∗):

Γ � tf [x1 := c1, . . . ,xn := cn] : τ (∗)

Therefore, the preservation holds in this case as well.

Exercise: prove the above step that replacing variables with constants of the same type
transforms term that has type derivation with type τ into a term that again has a
derivation with type τ. Is there a more general statement?


