Recursive Descent LL(1) Parsing

useful parsing techniqueto make it work, we might need to transform the grammar

Recursive Descent is Decent

Recursive descent is a decent parsing technique

- can be easily implemented manually based on the grammar (which may require transformation)
- efficient (linear) in the size of the token sequence

Correspondence between grammar and code

- concatenation \rightarrow ;
- \neg alternative (|) → if
- repetition (*) \rightarrow while
- nonterminal \rightarrow recursive procedure

A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

```
statmt ::=
```

```
println ( stringConst , ident )
| ident = expr
| if ( expr ) statmt (else statmt)?
| while ( expr ) statmt
| { statmt* }
```

Parser for the statmt (rule -> code)

def skip(t : Token) = if (lexer.token == t) lexer.next
 else error("Expected"+ t)

def statmt = {

if (lexer.token == Println) { lexer.next;

skip(openParen); skip(stringConst); skip(comma);

skip(identifier); skip(closedParen)

} else if (lexer.token == Ident) { lexer.next;

skip(equality); expr

} else if (lexer.token == ifKeyword) { lexer.next; skip(openParen); expr; skip(closedParen); statmt; if (lexer.token == elseKeyword) { lexer.next; statmt }

// | while (expr) statmt

Continuing Parser for the Rule

// | while (expr) statmt

} else if (lexer.token == whileKeyword) { lexer.next; skip(openParen); expr; skip(closedParen); statmt

// | { statmt* }

} else if (lexer.token == openBrace) { lexer.next; while (isFirstOfStatmt) { statmt } skip(closedBrace)

How to construct if conditions?

- Look what each alternative starts with to decide what to parse
- Here: we have terminals at the beginning of each alternative
- More generally, we have 'first' computation, as for regular expressions
- Consider a grammar G and non-terminal N
- $L_{G}(N) = \{ \text{ set of strings that } N \text{ can derive } \}$

```
e.g. L(statmt) - all statements of while language
```

```
first(N) = { a | aw in L_G(N), a - terminal, w - string of terminals}
```

```
first(statmt) = { println, ident, if, while, { }
```

```
first(while ( expr ) statmt) = { while } - we will give an algorithm
```

Formalizing and Automating Recursive Descent: LL(1) Parsers Task: Rewrite Grammar to make it suitable for recursive descent parser

• Assume the priorities of operators as in Java

```
expr ::= expr (+|-|*|/) expr
| name | `(' expr `)'
name ::= ident
```

Grammar vs Recursive Descent Parser

```
expr ::= term termList
terml ist ::= + term terml ist
        - term termList
        3
term ::= factor factorList
factorList ::= * factor factorList
            / factor factorList
             3
factor ::= name | ( expr )
name ::= ident
```

Note that the abstract trees we would create in this example do not strictly follow parse trees.

```
def expr = { term; termList }
def termList =
 if (token==PLUS) {
  skip(PLUS); term; termList
 } else if (token==MINUS)
  skip(MINUS): term: termList
def term = { factor; factorList }
...
```

```
def factor =
    if (token==IDENT) name
    else if (token==OPAR) {
        skip(OPAR); expr; skip(CPAR)
    } else error("expected ident or )")
```

Rough General Idea

def A = if (token \in T1) { B₁ ... B_n $else if (token \in T3)$ D₁ ... D_r } else error("expected T1,T2,T3")

where:

 $T1 = first(B_1 ... B_n)$ $T2 = first(C_1 ... C_n)$ $T3 = first(D_1 ... D_r)$ $\mathbf{first}(\mathsf{B}_1 \dots \mathsf{B}_n) = \{ \mathsf{a} \in \Sigma \mid \mathsf{B}_1 \dots \mathsf{B}_n \Rightarrow \dots \Rightarrow \mathsf{aw} \}$ T1, T2, T3 should be **disjoint** sets of tokens.

Computing first in the example

```
expr ::= term termList
terml ist ::= + term terml ist
        - term termList
        ε
term ::= factor factorList
factorList ::= * factor factorList
            | / factor factorList
             3
factor ::= name | ( expr )
name ::= ident
```

```
first(name) = {ident}
first((expr)) = \{()\}
first(factor) = first(name)
              U first( ( expr ) )
            = \{ ident \} \cup \{ ( \} \}
            = {ident, ( }
first(* factor factorList) = { * }
first(/ factor factorList) = { / }
first(factorList) = { *, / }
first(term) = first(factor) = {ident. ( }
first(termList) = \{+, -\}
first(expr) = first(term) = {ident, (}
```

Algorithm for **first**: Goal

Given an arbitrary context-free grammar with a set of rules of the form $X ::= Y_1 ... Y_n$ compute first for each right-hand side and for each symbol.

- How to handle
- alternatives for one non-terminal
- sequences of symbols
- nullable non-terminals
- recursion

Rules with Multiple Alternatives

Sequences

 $first(B_1...B_p) = first(B_1)$

if not nullable(B₁)

 $first(B_1...B_p) = first(B_1) \cup ... \cup first(B_k)$

if nullable(B_1), ..., nullable(B_{k-1}) and not nullable(B_k) or k=p

Abstracting into Constraints

recursive grammar: constraints over finite sets: expr' is first(expr)

```
expr' = term'
expr ::= term termList
terml ist ··= + term terml ist
                                     termList' = \{+\}
        - term termList
                                           U {-}
        8
term ::= factor factorList
                                     term' = factor'
factorList ::= * factor factorList
                                    factorList' = {*}
             / factor factorList
                                               U{/}
             3
factor ::= name | ( expr )
                                     factor' = name' U { ( }
name ::= ident
                                    name' = { ident }
```

nullable: termList, factorList

For this nice grammar, there is no recursion in constraints. Solve by substitution.

Example to Generate Constraints

terminals: **a**,**b** non-terminals: S, X, Y, Z

reachable (from S): productive: nullable:

First sets of terminals: S', X', Y', Z' \subseteq {a,b}

Example to Generate Constraints

terminals: **a**,**b** non-terminals: S, X, Y, Z

reachable (from S): S, X, Y, Z productive: X, Z, S, Y nullable: Z These constraints are recursive. How to solve them? S', X', Y', Z' \subseteq {a,b} How many candidate solutions

- in this case?
- for k tokens, n nonterminals?

Iterative Solution of first Constraints

$$S' X' Y' Z'$$
1. {} {} {} {} {}
2. {} {b} {b} {a}
3. {b} {b} {a,b} {a}
4. {a,b} {a,b} {a,b} {a,b} {a}
5. {a,b} {a,b} {a,b} {a,b} {a}

$$S' = X' \cup Y' X' = \{b\} \cup S' Y' = Z' \cup X' \cup Y' Z' = \{a\}$$

- Start from all sets empty.
- Evaluate right-hand side and assign it to left-hand side.
- Repeat until it stabilizes.

Sets grow in each step

- initially they are empty, so they can only grow
- if sets grow, the RHS grows (U is monotonic), and so does LHS
- they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

• Non-terminal is nullable if it can derive $\boldsymbol{\epsilon}$

S ::= X Y
X ::= b S Y
Y ::= Z X b Y b
Ζ::=ε a

$$S' = X' | Y'$$

$$X' = 0 | (S' \& Y')$$

$$Y' = (Z' \& X' \& 0) | (Y' \& 0)$$

$$Z' = 1 | 0$$

- $S', X', Y', Z' \in \{0,1\}$
 - 0 not nullable
 - 1 nullable
 - | disjunction
 - & conjunction

- S' X' Y' Z'
- **1.** 0 0 0 0
- **2.** 0 0 0 1
- **3.** 0 0 0 1

again monotonically growing

Computing first and nullable

- Given any grammar we can compute
 - for each non-terminal X whether nullable(X)
 - using this, the set first(X) for each non-terminal X
- General approach:
 - generate constraints over finite domains, following the structure of each rule
 - [–] solve the constraints iteratively
 - start from least elements
 - keep evaluating RHS and re-assigning the value to LHS
 - stop when there is no more change

Summary: Algorithm for nullable

```
nullable = {}
changed = true
while (changed) {
 changed = false
 for each non-terminal X
  if ((X is not nullable) and
      (grammar contains rule X := \varepsilon | \dots )
        or (grammar contains rule X ::= Y1 ... Yn | ...
      where \{Y1, \dots, Yn\} \subseteq nullable
  then {
     nullable = nullable U \{X\}
     changed = true
```

Summary: Algorithm for first

```
for each nonterminal X: first(X)={}
for each terminal t: first(t)={t}
repeat
 for each grammar rule X ::= Y(1) \dots Y(k)
 for i = 1 to k
   if i=1 or \{Y(1), \dots, Y(i-1)\} \subseteq nullable then
     first(X) = first(X) \cup first(Y(i))
until none of first(...) changed in last iteration
```

Follow sets. LL(1) Parsing Table

```
Exercise Introducing Follow Sets
Compute nullable, first for this grammar:
   stmtList ::= ε | stmt_stmtList
   stmt ::= assign | block
   assign ::= ID = ID :
   block ::= beginof ID stmtList ID ends
Describe a parser for this grammar and explain how it
behaves on this input:
   beginof mvPrettvCode
       x = u;
       v = v;
   myPrettyCode ends
```

How does a recursive descent parser look like?

```
def stmtList =
```

```
if (???) {} what should the condition be?
```

```
else { stmt; stmtList }
```

```
def stmt =
```

```
if (lex.token == ID) assign
```

```
else if (lex.token == beginof) block
```

```
else error("Syntax error: expected ID or beginonf")
```

```
•••
```

```
def block =
```

```
{ skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }
```

Problem Identified

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Problem parsing stmtList:

- ID could start alternative stmt stmtList
- ID could follow stmt, so we may wish to parse ε that is, do nothing and return
- For nullable non-terminals, we must also compute what **follows** them

LL(1) Grammar - good for building recursive descent parsers

- Grammar is LL(1) if for each nonterminal X
 - ⁻ first sets of different alternatives of X are disjoint
 - if nullable(X), first(X) must be disjoint from follow(X) and only one alternative of X may be nullable
- For each LL(1) grammar we can build recursive-descent parser
- Each LL(1) grammar is unambiguous
- If a grammar is not LL(1), we can sometimes transform it into equivalent LL(1) grammar

Computing if a token can follow

There exists a derivation from the start symbol that produces a sequence of terminals and nonterminals of the form ...Xa... (the token a follows the non-terminal X)

Rule for Computing Follow

Given X ::= YZ (for reachable X) then **first**(Z) \subseteq **follow**(Y) and **follow**(X) \subseteq **follow**(Z) now take care of nullable ones as well:

For each rule $X ::= Y_1 \dots Y_p \dots Y_q \dots Y_r$

follow(Y_p) should contain:

- **first(** $Y_{p+1}Y_{p+2}...Y_{r}$)
- also **follow**(X) if **nullable**(Y_{p+1}Y_{p+2}Y_r)

Compute nullable, first, follow

```
stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
```

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have

- nullable(stmtList)
- first(stmt) ∩ follow(stmtList) = {ID}
- If a recursive-descent parser sees **ID**, it does not know if it should
 - finish parsing stmtList or
 - parse another stmt

Table for LL(1) Parser: Example

$$S ::= B EOF$$
(1)
$$B ::= \varepsilon | B (B)$$
(1)
(2)

nullable: B
first(S) = { (, EOF }
follow(S) = {}
first(B) = { (}
follow(B) = {), (, EOF }

parse conflict - choice ambiguity: grammar not LL(1)

1 is in entry because (is in follow(B) 2 is in entry because (is in first(B(B))

Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set[Int]

 $\begin{vmatrix} A ::= (1) B_1 \dots B_p \\ | (2) C_1 \dots C_q \\ | (3) D_1 \dots D_r \end{vmatrix} \qquad | if t \in first(C_1 \dots C_q) add to choice(A,t) \\ if t \in follow(A) add K to \end{vmatrix}$

if $t \in first(C_1 \dots C_q)$ add 2

choice(A,t) where K is nullable

For example, when parsing A and seeing token t choice(A,t) = $\{2\}$ means: parse alternative 2 (C₁...C_a) choice(A,t) = $\{3\}$ means: parse alternative 3 (D₁... D_r) choice(A,t) = {} means: report syntax error $choice(A,t) = \{2,3\}: not LL(1)$ grammar

General Idea when parsing nullable(A)

def A = if (token \in T1) { C₁ ... C_a $else if (token \in T3)$ D₁ ... D_r }// no else error, just return

where:

 $T1 = first(B_1 ... B_p)$ $T2 = first(C_1 ... C_n)$ $T3 = first(D_1 ... D_r)$ $T_{c} = follow(A)$

Only one of the alternatives can be nullable (here: 2nd) T1, T2, T3, T_r should be pairwise **disjoint** sets of tokens.