
Recursive Descent
LL(1) Parsing

- useful parsing technique
- to make it work, we might need to transform the grammar



Recursive Descent is Decent

Recursive descent is a decent parsing technique
– can be easily implemented manually based on the 

grammar (which may require transformation)
– efficient (linear) in the size of the token sequence

Correspondence between grammar and code
– concatenation → ; 
– alternative (|) →  if
– repetition (*) →  while
– nonterminal → recursive procedure



A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

statmt ::= 

               println ( stringConst , ident )

             | ident = expr

             | if ( expr ) statmt (else statmt)?

             | while ( expr ) statmt
             | { statmt* } 



Parser for the statmt (rule -> code)
def skip(t : Token) = if (lexer.token == t) lexer.next 
   else error(“Expected”+ t)
def statmt = {
   if (lexer.token == Println) { lexer.next;
      skip(openParen); skip(stringConst); skip(comma);
      skip(identifier); skip(closedParen)
   } else if (lexer.token == Ident) { lexer.next;
      skip(equality); expr
   } else if (lexer.token == ifKeyword) { lexer.next;
      skip(openParen); expr; skip(closedParen); statmt;
      if (lexer.token == elseKeyword) { lexer.next; statmt }
   // | while ( expr ) statmt



Continuing Parser for the Rule

   // | while ( expr ) statmt

   // | { statmt* } 

   } else if (lexer.token == whileKeyword) { lexer.next;

      skip(openParen); expr; skip(closedParen); statmt

   } else if (lexer.token == openBrace) { lexer.next;

      while (isFirstOfStatmt) { statmt }

      skip(closedBrace)

 } else { error(“Unknown statement, found token ” +  
           lexer.token)  }



How to construct if conditions?

statmt ::= println ( stringConst , ident )

             | if ( expr ) statmt (else statmt)?

             | while ( expr ) statmt

• Look what each alternative starts with to decide what to parse
• Here: we have terminals at the beginning of each alternative
• More generally, we have ‘first’ computation, as for regular 

expressions
• Consider a grammar G and non-terminal N
LG(N) = { set of strings that N can derive }

e.g. L(statmt) – all statements of while language

first(N) = { a | aw in LG(N), a – terminal,  w – string of terminals}

first(statmt) = { println, ident, if, while, {  }

first(while ( expr ) statmt) = { while } - we will give an algorithm



Formalizing and Automating 
Recursive Descent: LL(1) Parsers



Task: Rewrite Grammar to make it 
suitable for recursive descent parser

• Assume the priorities of operators as in Java

expr ::= expr (+|-|*|/) expr 
         | name | `(’ expr `)’
name ::= ident



Grammar vs Recursive Descent Parser

expr ::= term termList
termList ::= + term termList 
     |  - term termList 

    | ε
term ::= factor factorList
factorList ::= * factor factorList 
                    | / factor factorList 
                    | ε
factor ::= name | ( expr )
name ::= ident

def expr = { term; termList }
def termList =
  if (token==PLUS) {
     skip(PLUS); term; termList
  } else if (token==MINUS)
     skip(MINUS); term; termList
  }

def term = { factor; factorList }

...

def factor =
  if (token==IDENT) name
  else if (token==OPAR) {
    skip(OPAR); expr; skip(CPAR)
  } else error("expected ident or )")

Note that the abstract trees we would 
create in this example do not strictly 
follow parse trees.



Rough General Idea

A ::=  B1 ... Bp

       | C1 ... Cq

       | D1 ... Dr

def A = 
  if (token  ∈ T1) {
     B1 ... Bp

  else if (token  ∈ T2) {
     C1 ... Cq

  } else if (token  ∈ T3) {
     D1 ... Dr

  } else error("expected T1,T2,T3")where:

T1 = first(B1 ... Bp)

T2 = first(C1 ... Cq)

T3 = first(D1 ... Dr)

first(B1 ... Bp) = {a Σ∈  | B1...Bp    ⇒... ⇒   aw }

T1, T2, T3 should be disjoint sets of tokens.



Computing first in the example

expr ::= term termList
termList ::= + term termList 
     |  - term termList 

    | ε
term ::= factor factorList
factorList ::= * factor factorList 
                    | / factor factorList 
                    | ε
factor ::= name | ( expr )
name ::= ident

first(name) = {ident}
first(( expr ) ) = { ( }
first(factor) = first(name)
                     U first( ( expr ) )
                   = {ident} U{ ( }
                   = {ident, ( }

first(* factor factorList) = { * } 

first(/ factor factorList) = { / } 

first(factorList) = { *, / }

first(term) = first(factor) = {ident, ( }

first(termList) = { + , - } 

first(expr) = first(term) = {ident, ( }



Algorithm for first: Goal

Given an arbitrary context-free grammar with a 
set of rules of the form X ::= Y1 ... Yn  compute 

first for each right-hand side and for each 
symbol.

How to handle
• alternatives for one non-terminal
• sequences of symbols

• nullable non-terminals

• recursion



Rules with Multiple Alternatives

A ::=  B1 ... Bp

       | C1 ... Cq

       | D1 ... Dr

first(A) =  first(B1... Bp)

             U first(C1 ... Cq)

             U first(D1 ... Dr)

Sequences
first(B1... Bp) = first(B1) if not nullable(B1)

first(B1... Bp) = first(B1) U ... U first(Bk)

if nullable(B1), ..., nullable(Bk-1) and

not nullable(Bk) or k=p



Abstracting into Constraints

expr ::= term termList
termList ::= + term termList 
     |  - term termList 

    | ε
term ::= factor factorList
factorList ::= * factor factorList 
                    | / factor factorList 
                    | ε
factor ::= name | ( expr )
name ::= ident

expr' = term'
termList' =  {+}
     U {-}

term' = factor'
factorList' = {*}
                  U { / } 

factor' = name' U { ( }
name' = { ident }

recursive grammar: constraints over finite sets: expr' is first(expr)

nullable: termList, factorList
For this nice grammar, there is 
no recursion in constraints.
Solve by substitution.



Example to Generate Constraints

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' U Y' 
X' =

reachable (from S):
productive:
nullable:

terminals: a,b
non-terminals: S, X, Y, Z

First sets of terminals: 
   S', X', Y', Z'  {a,b}⊆ {a,b}



Example to Generate Constraints

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' U Y' 
X' = {b} U S'
Y' = Z' U X'   U Y'
Z' = {a}

reachable (from S): S, X, Y, Z
productive: X, Z, S, Y
nullable: Z

terminals: a,b
non-terminals: S, X, Y, Z

These constraints are recursive.
How to solve them?

S', X', Y', Z'  {a,b}⊆ {a,b}
How many candidate solutions
• in this case?
• for k tokens, n nonterminals?



Iterative Solution of first Constraints

     S'    X'    Y'        Z' 
    {}     {}     {}        {}
    {}     {b}   {b}     {a}
   {b}   {b}  {a,b}   {a}
{a,b} {a,b} {a,b}   {a}
{a,b} {a,b} {a,b}   {a}

S' = X' U Y' 
X' = {b} U S'
Y' = Z' U X'   U Y'
Z' = {a}

• Start from all sets empty.
• Evaluate right-hand side and 

assign it to left-hand side.
• Repeat until it stabilizes.

1.
2.
3.
4.
5.

Sets grow in each step
• initially they are empty, so they can only grow
• if sets grow, the RHS grows (U is monotonic), and so does LHS
• they cannot grow forever: in the worst case contain all tokens



Constraints for Computing Nullable

• Non-terminal is nullable if it can derive ε

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' | Y' 
X' = 0 | (S' & Y')
Y' = (Z' & X' & 0) | (Y' & 0)
Z' = 1 | 0

S', X', Y', Z'  {0,1}∈ {0,1}
   0  - not nullable
   1  - nullable
    |  - disjunction
    & - conjunction

     S'    X'    Y'    Z' 
     0     0     0     0
     0     0     0     1
     0     0     0     1

1.
2.
3.

again monotonically growing



Computing first and nullable

• Given any grammar we can compute
– for each non-terminal X whether nullable(X)
– using this, the set first(X) for each non-terminal X

• General approach:
– generate constraints over finite domains, following 

the structure of each rule
– solve the constraints iteratively

• start from least elements
• keep evaluating RHS and re-assigning the value to LHS
• stop when there is no more change



Summary: Algorithm for nullable
nullable = {}

changed = true

while (changed) {

  changed = false

  for each non-terminal X

    if ((X is not nullable) and

     (grammar contains rule      X ::= ε | ...     )

              or   (grammar contains rule     X ::= Y1 ... Yn | ...

          where {Y1,...,Yn}  nullable)⊆ {a,b}
    then {

        nullable = nullable U {X}

        changed = true
     }

}



Summary: Algorithm for first

for each nonterminal X:  first(X)={}

for each terminal t:  first(t)={t}

repeat

  for each grammar rule X ::= Y(1) ... Y(k)

  for i = 1 to k

      if i=1 or {Y(1),...,Y(i-1)}  nullable ⊆ {a,b} then

        first(X) = first(X) U first(Y(i))

until none of first(…) changed in last iteration



Follow sets. LL(1) Parsing Table



Exercise  Introducing Follow Sets
Compute nullable, first for this grammar:

stmtList ::= ε | stmt  stmtList 

stmt ::= assign | block 

assign ::= ID  =  ID  ; 

block ::= beginof  ID stmtList ID ends

Describe a parser for this grammar and explain how it 
behaves on this input:

beginof myPrettyCode 

              x = u; 
              y = v; 
      myPrettyCode ends



How does a recursive descent parser 
look like?

def stmtList = 
  if (???) {} what should the condition be?

  else { stmt; stmtList }

def stmt =
  if (lex.token == ID) assign
  else if (lex.token == beginof) block
  else error(“Syntax error: expected ID or beginonf”)
…

def block =
  { skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }



Problem Identified

stmtList ::= ε | stmt  stmtList 

stmt ::= assign | block 

assign ::= ID  =  ID  ; 

block ::= beginof  ID stmtList ID ends

Problem parsing stmtList: 
– ID could start alternative stmt stmtList 
– ID could follow stmt, so we may wish to parse ε 

that is, do nothing and return

• For nullable non-terminals, we must also 
compute what follows them



LL(1) Grammar - good for building 
recursive descent parsers 

• Grammar is LL(1) if for each nonterminal X
– first sets of different alternatives of X are disjoint
– if nullable(X), first(X) must be disjoint from follow(X) 

and only one alternative of X may be nullable

• For each LL(1) grammar we can build 
recursive-descent parser

• Each LL(1) grammar is unambiguous

• If a grammar is not LL(1), we can sometimes 
transform it into equivalent LL(1) grammar



Computing if a token can follow

first(B1 ... Bp) = {a Σ∈  | B1...Bp    ⇒... ⇒   aw }

follow(X) = {a Σ∈  | S    ⇒... ⇒   ...Xa... }

There exists a derivation from the start symbol 
that produces a sequence of terminals and 
nonterminals of the form  ...Xa...
(the token a follows the non-terminal X)



Rule for Computing Follow

Given X ::= YZ (for reachable X)

then first(Z)  ⊆ {a,b} follow(Y)
and  follow(X)  ⊆ {a,b} follow(Z)

now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:

• first(Yp+1Yp+2...Yr)

• also follow(X) if  nullable(Yp+1Yp+2Yr)



Compute nullable, first, follow

stmtList ::= ε | stmt  stmtList 

stmt ::= assign | block 

assign ::= ID  =  ID  ; 

block ::= beginof  ID stmtList ID ends

Is this grammar LL(1)?



Conclusion of the Solution

The grammar is not LL(1) because we have 

• nullable(stmtList)

• first(stmt) ∩ follow(stmtList) = {ID} 

• If a recursive-descent parser sees ID, it does 
not know if it should 
– finish parsing stmtList or
– parse another stmt



Table for LL(1) Parser: Example

S ::= B EOF 
             (1)

B ::=  ε | B (B)
         (1)      (2)

EOF ( )

S {1} {1} {}

B {1} {1,2} {1}

nullable: B

first(S) = { (, EOF }
follow(S) = {}

first(B) = { ( }
follow(B) = { ), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see ) ,
report error

1 is in entry because ( is in follow(B)
2 is in entry because ( is in first(B(B))



Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set[Int]

A ::=  (1)  B1 ... Bp

       | (2)  C1 ... Cq

       | (3)  D1 ... Dr

For example, when parsing A and seeing token t

choice(A,t) = {2}  means: parse alternative 2   (C1 ... Cq )

choice(A,t) = {3}  means: parse alternative 3   (D1 ... Dr)

choice(A,t) = {}    means: report syntax error

choice(A,t) = {2,3} : not LL(1) grammar

if   t  first(∈ {0,1} C1 ... Cq)   add 2

    to choice(A,t)

if   t  follow(A) add K to ∈ {0,1}
choice(A,t) where K is nullable



General Idea when parsing nullable(A)

A ::=  B1 ... Bp

       | C1 ... Cq

            | D1 ... Dr

def A = 
  if (token  ∈ T1) {
     B1 ... Bp

  else if (token  (∈ T2  U  TF)) {

     C1 ... Cq

  } else if (token  ∈ T3) {
     D1 ... Dr

  } // no else error, just returnwhere:

T1 = first(B1 ... Bp)

T2 = first(C1 ... Cq)

T3 = first(D1 ... Dr)

TF = follow(A)

Only one of the alternatives can be nullable (here: 2nd) 
T1, T2, T3, TF  should be pairwise disjoint sets of tokens.


