
Recursive Descent
LL(1) Parsing

- useful parsing technique
- to make it work, we might need to transform the grammar

Recursive Descent is Decent

Recursive descent is a decent parsing technique
– can be easily implemented manually based on the

grammar (which may require transformation)
– efficient (linear) in the size of the token sequence

Correspondence between grammar and code
– concatenation → ;
– alternative (|) → if
– repetition (*) → while
– nonterminal → recursive procedure

A Rule of While Language Syntax

// Where things work very nicely for recursive descent!

statmt ::=

 println (stringConst , ident)

 | ident = expr

 | if (expr) statmt (else statmt)?

 | while (expr) statmt
 | { statmt* }

Parser for the statmt (rule -> code)
def skip(t : Token) = if (lexer.token == t) lexer.next
 else error(“Expected”+ t)
def statmt = {
 if (lexer.token == Println) { lexer.next;
 skip(openParen); skip(stringConst); skip(comma);
 skip(identifier); skip(closedParen)
 } else if (lexer.token == Ident) { lexer.next;
 skip(equality); expr
 } else if (lexer.token == ifKeyword) { lexer.next;
 skip(openParen); expr; skip(closedParen); statmt;
 if (lexer.token == elseKeyword) { lexer.next; statmt }
 // | while (expr) statmt

Continuing Parser for the Rule

 // | while (expr) statmt

 // | { statmt* }

 } else if (lexer.token == whileKeyword) { lexer.next;

 skip(openParen); expr; skip(closedParen); statmt

 } else if (lexer.token == openBrace) { lexer.next;

 while (isFirstOfStatmt) { statmt }

 skip(closedBrace)

 } else { error(“Unknown statement, found token ” +
 lexer.token) }

How to construct if conditions?

statmt ::= println (stringConst , ident)

 | if (expr) statmt (else statmt)?

 | while (expr) statmt

• Look what each alternative starts with to decide what to parse
• Here: we have terminals at the beginning of each alternative
• More generally, we have ‘first’ computation, as for regular

expressions
• Consider a grammar G and non-terminal N
LG(N) = { set of strings that N can derive }

e.g. L(statmt) – all statements of while language

first(N) = { a | aw in LG(N), a – terminal, w – string of terminals}

first(statmt) = { println, ident, if, while, { }

first(while (expr) statmt) = { while } - we will give an algorithm

Formalizing and Automating
Recursive Descent: LL(1) Parsers

Task: Rewrite Grammar to make it
suitable for recursive descent parser

• Assume the priorities of operators as in Java

expr ::= expr (+|-|*|/) expr
 | name | `(’ expr `)’
name ::= ident

Grammar vs Recursive Descent Parser

expr ::= term termList
termList ::= + term termList
 | - term termList

 | ε
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | ε
factor ::= name | (expr)
name ::= ident

def expr = { term; termList }
def termList =
 if (token==PLUS) {
 skip(PLUS); term; termList
 } else if (token==MINUS)
 skip(MINUS); term; termList
 }

def term = { factor; factorList }

...

def factor =
 if (token==IDENT) name
 else if (token==OPAR) {
 skip(OPAR); expr; skip(CPAR)
 } else error("expected ident or)")

Note that the abstract trees we would
create in this example do not strictly
follow parse trees.

Rough General Idea

A ::= B1 ... Bp

 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token ∈ T1) {
 B1 ... Bp

 else if (token ∈ T2) {
 C1 ... Cq

 } else if (token ∈ T3) {
 D1 ... Dr

 } else error("expected T1,T2,T3")where:

T1 = first(B1 ... Bp)

T2 = first(C1 ... Cq)

T3 = first(D1 ... Dr)

first(B1 ... Bp) = {a Σ∈ | B1...Bp ⇒... ⇒ aw }

T1, T2, T3 should be disjoint sets of tokens.

Computing first in the example

expr ::= term termList
termList ::= + term termList
 | - term termList

 | ε
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | ε
factor ::= name | (expr)
name ::= ident

first(name) = {ident}
first((expr)) = { (}
first(factor) = first(name)
 U first((expr))
 = {ident} U{ (}
 = {ident, (}

first(* factor factorList) = { * }

first(/ factor factorList) = { / }

first(factorList) = { *, / }

first(term) = first(factor) = {ident, (}

first(termList) = { + , - }

first(expr) = first(term) = {ident, (}

Algorithm for first: Goal

Given an arbitrary context-free grammar with a
set of rules of the form X ::= Y1 ... Yn compute

first for each right-hand side and for each
symbol.

How to handle
• alternatives for one non-terminal
• sequences of symbols

• nullable non-terminals

• recursion

Rules with Multiple Alternatives

A ::= B1 ... Bp

 | C1 ... Cq

 | D1 ... Dr

first(A) = first(B1... Bp)

 U first(C1 ... Cq)

 U first(D1 ... Dr)

Sequences
first(B1... Bp) = first(B1) if not nullable(B1)

first(B1... Bp) = first(B1) U ... U first(Bk)

if nullable(B1), ..., nullable(Bk-1) and

not nullable(Bk) or k=p

Abstracting into Constraints

expr ::= term termList
termList ::= + term termList
 | - term termList

 | ε
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | ε
factor ::= name | (expr)
name ::= ident

expr' = term'
termList' = {+}
 U {-}

term' = factor'
factorList' = {*}
 U { / }

factor' = name' U { (}
name' = { ident }

recursive grammar: constraints over finite sets: expr' is first(expr)

nullable: termList, factorList
For this nice grammar, there is
no recursion in constraints.
Solve by substitution.

Example to Generate Constraints

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' U Y'
X' =

reachable (from S):
productive:
nullable:

terminals: a,b
non-terminals: S, X, Y, Z

First sets of terminals:
 S', X', Y', Z' {a,b}⊆ {a,b}

Example to Generate Constraints

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' U Y'
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

reachable (from S): S, X, Y, Z
productive: X, Z, S, Y
nullable: Z

terminals: a,b
non-terminals: S, X, Y, Z

These constraints are recursive.
How to solve them?

S', X', Y', Z' {a,b}⊆ {a,b}
How many candidate solutions
• in this case?
• for k tokens, n nonterminals?

Iterative Solution of first Constraints

 S' X' Y' Z'
 {} {} {} {}
 {} {b} {b} {a}
 {b} {b} {a,b} {a}
{a,b} {a,b} {a,b} {a}
{a,b} {a,b} {a,b} {a}

S' = X' U Y'
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

• Start from all sets empty.
• Evaluate right-hand side and

assign it to left-hand side.
• Repeat until it stabilizes.

1.
2.
3.
4.
5.

Sets grow in each step
• initially they are empty, so they can only grow
• if sets grow, the RHS grows (U is monotonic), and so does LHS
• they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

• Non-terminal is nullable if it can derive ε

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::= ε | a

S' = X' | Y'
X' = 0 | (S' & Y')
Y' = (Z' & X' & 0) | (Y' & 0)
Z' = 1 | 0

S', X', Y', Z' {0,1}∈ {0,1}
 0 - not nullable
 1 - nullable
 | - disjunction
 & - conjunction

 S' X' Y' Z'
 0 0 0 0
 0 0 0 1
 0 0 0 1

1.
2.
3.

again monotonically growing

Computing first and nullable

• Given any grammar we can compute
– for each non-terminal X whether nullable(X)
– using this, the set first(X) for each non-terminal X

• General approach:
– generate constraints over finite domains, following

the structure of each rule
– solve the constraints iteratively

• start from least elements
• keep evaluating RHS and re-assigning the value to LHS
• stop when there is no more change

Summary: Algorithm for nullable
nullable = {}

changed = true

while (changed) {

 changed = false

 for each non-terminal X

 if ((X is not nullable) and

 (grammar contains rule X ::= ε | ...)

 or (grammar contains rule X ::= Y1 ... Yn | ...

 where {Y1,...,Yn} nullable)⊆ {a,b}
 then {

 nullable = nullable U {X}

 changed = true
 }

}

Summary: Algorithm for first

for each nonterminal X: first(X)={}

for each terminal t: first(t)={t}

repeat

 for each grammar rule X ::= Y(1) ... Y(k)

 for i = 1 to k

 if i=1 or {Y(1),...,Y(i-1)} nullable ⊆ {a,b} then

 first(X) = first(X) U first(Y(i))

until none of first(…) changed in last iteration

Follow sets. LL(1) Parsing Table

Exercise Introducing Follow Sets
Compute nullable, first for this grammar:

stmtList ::= ε | stmt stmtList

stmt ::= assign | block

assign ::= ID = ID ;

block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it
behaves on this input:

beginof myPrettyCode

 x = u;
 y = v;
 myPrettyCode ends

How does a recursive descent parser
look like?

def stmtList =
 if (???) {} what should the condition be?

 else { stmt; stmtList }

def stmt =
 if (lex.token == ID) assign
 else if (lex.token == beginof) block
 else error(“Syntax error: expected ID or beginonf”)
…

def block =
 { skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }

Problem Identified

stmtList ::= ε | stmt stmtList

stmt ::= assign | block

assign ::= ID = ID ;

block ::= beginof ID stmtList ID ends

Problem parsing stmtList:
– ID could start alternative stmt stmtList
– ID could follow stmt, so we may wish to parse ε

that is, do nothing and return

• For nullable non-terminals, we must also
compute what follows them

LL(1) Grammar - good for building
recursive descent parsers

• Grammar is LL(1) if for each nonterminal X
– first sets of different alternatives of X are disjoint
– if nullable(X), first(X) must be disjoint from follow(X)

and only one alternative of X may be nullable

• For each LL(1) grammar we can build
recursive-descent parser

• Each LL(1) grammar is unambiguous

• If a grammar is not LL(1), we can sometimes
transform it into equivalent LL(1) grammar

Computing if a token can follow

first(B1 ... Bp) = {a Σ∈ | B1...Bp ⇒... ⇒ aw }

follow(X) = {a Σ∈ | S ⇒... ⇒ ...Xa... }

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...
(the token a follows the non-terminal X)

Rule for Computing Follow

Given X ::= YZ (for reachable X)

then first(Z) ⊆ {a,b} follow(Y)
and follow(X) ⊆ {a,b} follow(Z)

now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:

• first(Yp+1Yp+2...Yr)

• also follow(X) if nullable(Yp+1Yp+2Yr)

Compute nullable, first, follow

stmtList ::= ε | stmt stmtList

stmt ::= assign | block

assign ::= ID = ID ;

block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have

• nullable(stmtList)

• first(stmt) ∩ follow(stmtList) = {ID}

• If a recursive-descent parser sees ID, it does
not know if it should
– finish parsing stmtList or
– parse another stmt

Table for LL(1) Parser: Example

S ::= B EOF
 (1)

B ::= ε | B (B)
 (1) (2)

EOF ()

S {1} {1} {}

B {1} {1,2} {1}

nullable: B

first(S) = { (, EOF }
follow(S) = {}

first(B) = { (}
follow(B) = {), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see) ,
report error

1 is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))

Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set[Int]

A ::= (1) B1 ... Bp

 | (2) C1 ... Cq

 | (3) D1 ... Dr

For example, when parsing A and seeing token t

choice(A,t) = {2} means: parse alternative 2 (C1 ... Cq)

choice(A,t) = {3} means: parse alternative 3 (D1 ... Dr)

choice(A,t) = {} means: report syntax error

choice(A,t) = {2,3} : not LL(1) grammar

if t first(∈ {0,1} C1 ... Cq) add 2

 to choice(A,t)

if t follow(A) add K to ∈ {0,1}
choice(A,t) where K is nullable

General Idea when parsing nullable(A)

A ::= B1 ... Bp

 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token ∈ T1) {
 B1 ... Bp

 else if (token (∈ T2 U TF)) {

 C1 ... Cq

 } else if (token ∈ T3) {
 D1 ... Dr

 } // no else error, just returnwhere:

T1 = first(B1 ... Bp)

T2 = first(C1 ... Cq)

T3 = first(D1 ... Dr)

TF = follow(A)

Only one of the alternatives can be nullable (here: 2nd)
T1, T2, T3, TF should be pairwise disjoint sets of tokens.

