Recursive Descent LL(1) Parsing

\author{

- useful parsing technique
}
- to make it work, we might need to transform the grammar

Recursive Descent is Decent

Recursive descent is a decent parsing technique

- can be easily implemented manually based on the grammar (which may require transformation)
- efficient (linear) in the size of the token sequence

Correspondence between grammar and code

- concatenation \rightarrow;
- alternative (|) \rightarrow if
- repetition (*) \rightarrow while
- nonterminal \rightarrow recursive procedure

A Rule of While Language Syntax

// Where things work very nicely for recursive descent!
statmt ::=
println (stringConst , ident)
| ident = expr
| if (expr) statmt (else statmt)?
| while (expr) statmt
\{ statmt* \}

Parser for the statmt (rule -> code)

```
def skip(t : Token) = if (lexer.token == t) lexer.next
    else error("Expected"+t)
def statmt = {
    if (lexer.token == Println) { lexer.next;
        skip(openParen); skip(stringConst); skip(comma);
        skip(identifier); skip(closedParen)
    } else if (lexer.token == Ident) { lexer.next;
        skip(equality); expr
    } else if (lexer.token == ifKeyword) { lexer.next;
        skip(openParen); expr; skip(closedParen); statmt;
        if (lexer.token == elseKeyword) { lexer.next; statmt }
    // | while ( expr ) statmt
```


Continuing Parser for the Rule

// | while (expr) statmt
\} else if (lexer.token == whileKeyword) \{ lexer.next; skip(openParen); expr; skip(closedParen); statmt
// | \{ statmt* \}
\} else if (lexer.token == openBrace) \{ lexer.next; while (isfirstOfStatmt) \{ statmt \}
skip(closedBrace)
\} else \{ error("Unknown statement, found token " + lexer.token) \}

How to construct if conditions?

```
statmt ::= println ( stringConst , ident )
    | if ( expr ) statmt (else statmt)?
    | while ( expr ) statmt
```

- Look what each alternative starts with to decide what to parse
- Here: we have terminals at the beginning of each alternative
- More generally, we have 'first' computation, as for regular expressions
- Consider a grammar G and non-terminal N
$L_{6}(N)=\{$ set of strings that N can derive $\}$
e.g. L(statmt) - all statements of while language first $(N)=\left\{a \mid\right.$ aw in $L_{6}(N), a-$ terminal, $w-$ string of terminals $\}$
first(statmt) $=\{$ println, ident, if, while, $\{$ \}
first(while (expr) statmt) $=\{$ while $\} \quad$ - we will give an algorithm

Formalizing and Automating Recursive Descent: LL(1) Parsers

Task: Rewrite Grammar to make it suitable for recursive descent parser

- Assume the priorities of operators as in Java

```
expr ::= expr (+|-|*|/) expr
    | name | `(' expr `)'
name ::= ident
```


Grammar vs Recursive Descent Parser

```
expr ::= term termList
termList ::= + term termList
    | - term termList
    \varepsilon
term ::= factor factorList
factorList ::= * factor factorList
    | / factor factorList
    | \varepsilon
factor ::= name | ( expr )
name ::= ident
```

Note that the abstract trees we would create in this example do not strictly follow parse trees.
def expr $=\{$ term; termList $\}$
def termList =
if (token==PLUS) \{
skip(PLUS); term; termList
\} else if (token==MINUS)
skip(MINUS); term; termList
\}
def term $=\{$ factor; factorList $\}$
def factor $=$
if (token==IDENT) name
else if (token==OPAR) \{
skip(OPAR); expr; skip(CPAR)
\} else error("expected ident or)")
def expr $=$ \{ term; termList \}
def termList =
if (token==PLUS) \{ skip(PLUS); term; termList \} else if (token==MINUS) skip(MINUS); term; termList \}
def term $=\{$ factor; factorList $\}$
def factor =
if (token==IDENT) name else if (token==OPAR) \{ skip(OPAR); expr; skip(CPAR)
\} else error("expected ident or)")

Rough General Idea

$$
\begin{aligned}
& A::= B_{1} \ldots B_{p} \\
& \mid C_{1} \ldots C_{q} \\
& D_{1} \ldots D_{r} \\
& \hline
\end{aligned}
$$

where:

```
\(\operatorname{def} A=\)
if (token \(\in T 1\) ) \{
    \(B_{1} \ldots B_{p}\)
    else if (token \(\in T 2\) ) \{
        \(\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{q}}\)
    \} else if (token \(\in\) T3) \(\{\)
    \(D_{1} \ldots D_{r}\)
    \} else error("expected T1,T2,T3")
```

$$
\begin{aligned}
& \mathrm{T} 1=\operatorname{first}\left(\mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{p}}\right) \\
& \mathrm{T} 2=\operatorname{first}\left(\mathrm{C}_{1} \ldots \mathrm{C}_{\mathrm{q}}\right) \\
& \mathrm{T} 3=\operatorname{first}\left(\mathrm{D}_{1} \ldots \mathrm{D}_{\mathrm{r}}\right)
\end{aligned}
$$

first $\left(B_{1} \ldots B_{p}\right)=\left\{a \in \Sigma \mid B_{1} \ldots B_{p} \Rightarrow \ldots \Rightarrow\right.$ aw $\}$
T1, T2, T3 should be disjoint sets of tokens.

Computing first in the example

```
| expr ::= term termList 
first(name) = {ident }
first(( expr )) = { (}
first(factor) = first(name)
    U first( ( expr ))
    = {ident} U{ (}
    = {ident, ( }
first(* factor factorList) = {* }
first(/ factor factorList) = { / }
first(factorList) = { *,/ }
first(term) = first(factor) = {ident, ( }
first(termList) ={ + , - }
first(expr) = first(term) = {ident, ( }
```


Algorithm for first: Goal

Given an arbitrary context-free grammar with a set of rules of the form $X::=Y_{1} \ldots Y_{n}$ compute first for each right-hand side and for each symbol.
How to handle

- alternatives for one non-terminal
- sequences of symbols
- nullable non-terminals
- recursion

Rules with Multiple Alternatives

$$
\begin{aligned}
A::= & B_{1} \ldots B_{p} \\
\mid & C_{1} \ldots C_{q} \\
& D_{1} \ldots D_{r}
\end{aligned}
$$

$$
\begin{aligned}
\text { first }(A) & =\operatorname{first}\left(B_{1} \ldots B_{p}\right) \\
& U \operatorname{first}\left(C_{1} \ldots C_{q}\right) \\
& U \operatorname{first}\left(D_{1} \ldots D_{r}\right)
\end{aligned}
$$

Sequences

$$
\begin{aligned}
& \text { first }\left(B_{1} \ldots B_{p}\right)=\operatorname{first}\left(B_{1}\right) \quad \text { if not nullable }\left(B_{1}\right) \\
& \operatorname{first}\left(B_{1} \ldots B_{p}\right)=\operatorname{first}\left(B_{1}\right) \cup \ldots \cup \text { first }\left(B_{k}\right)
\end{aligned}
$$

if nullable $\left(B_{1}\right), \ldots$, nullable $\left(B_{k-1}\right)$ and not nullable $\left(\mathrm{B}_{\mathrm{k}}\right)$ or $\mathrm{k}=\mathrm{p}$

Abstracting into Constraints

recursive grammar: constraints over finite sets: expr' is first(expr)

expr $::=$ term termList	
termList $::=+$ term termList	
	$\mid-$ term termList
\mid	ε
term $::=$ factor factorList	
factorList $::={ }^{*}$ factor factorList	
	$\mid /$ factor factorList
	$\mid \varepsilon$
factor $::=$ name \mid (expr)	
name $::=$ ident	

nullable: termList, factorList

$$
\begin{aligned}
& \text { expr' = term' } \\
& \text { termList' }=\{+\} \\
& \text { U \{-\} } \\
& \text { term' = factor' } \\
& \text { factorList' }=\left\{{ }^{*}\right\} \\
& \text { U \{ / \} } \\
& \text { factor' = name' U \{ (\} } \\
& \text { name' }=\{\text { ident }\}
\end{aligned}
$$

For this nice grammar, there is no recursion in constraints.
Solve by substitution.

Example to Generate Constraints

$$
\begin{aligned}
& S::=X \mid Y \\
& X::=\mathbf{b} \mid S Y \\
& Y::=Z X \mathbf{b} \mid Y \mathbf{b} \\
& Z::=\boldsymbol{\varepsilon} \mid \mathbf{a}
\end{aligned}
$$

terminals: a,b
non-terminals: S, X, Y, Z
reachable (from S):
productive:
nullable:

$$
\begin{aligned}
& S^{\prime}=X^{\prime} U Y^{\prime} \\
& X^{\prime}=
\end{aligned}
$$

First sets of terminals:
$\mathrm{S}^{\prime}, \mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime} \subseteq\{\mathrm{a}, \mathrm{b}\}$

Example to Generate Constraints

$$
\begin{aligned}
& S::=X \mid Y \\
& X::=\mathbf{b} \mid S Y \\
& Y::=Z X \mathbf{b} \mid Y \mathbf{b} \\
& Z::=\boldsymbol{\varepsilon} \mid \mathbf{a}
\end{aligned}
$$

terminals: a,b
non-terminals: S, X, Y, Z
reachable (from S): S, X, Y, Z
productive: $\mathrm{X}, \mathrm{Z}, \mathrm{S}, \mathrm{Y}$
nullable: Z

$$
\begin{aligned}
& S^{\prime}=X^{\prime} U Y^{\prime} \\
& X^{\prime}=\{b\} \cup S^{\prime} \\
& Y^{\prime}=Z^{\prime} \cup X^{\prime} \quad U Y^{\prime} \\
& Z^{\prime}=\{a\}
\end{aligned}
$$

These constraints are recursive. How to solve them?

$$
\mathrm{S}^{\prime}, \mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}^{\prime} \subseteq\{\mathrm{a}, \mathrm{~b}\}
$$

How many candidate solutions

- in this case?
- for k tokens, n nonterminals?

Iterative Solution of first Constraints

	S^{\prime}	X^{\prime}	Y^{\prime}	Z^{\prime}
1.	$\}$	$\}$	$\}$	$\}$
2.	$\}$	$\{b\}$	$\{b\}$	$\{a\}$
3.	$\{b\}$	$\{b\}$	$\{a, b\}$	$\{a\}$
4.	$\{a, b\}\{a, b\}\{a, b\}$	$\{a\}$		
5.	$\{a, b\}\{a, b\}\{a, b\}$	$\{a\}$		

$$
\begin{aligned}
& S^{\prime}=X^{\prime} U Y^{\prime} \\
& X^{\prime}=\{b\} \cup S^{\prime} \\
& Y^{\prime}=Z^{\prime} \cup X^{\prime} \quad U Y^{\prime} \\
& Z^{\prime}=\{a\}
\end{aligned}
$$

- Start from all sets empty.
- Evaluate right-hand side and assign it to left-hand side.
- Repeat until it stabilizes.

Sets grow in each step

- initially they are empty, so they can only grow
- if sets grow, the RHS grows (U is monotonic), and so does LHS
- they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

- Non-terminal is nullable if it can derive ε

$$
\begin{aligned}
& S::=X \mid Y \\
& X::=\mathbf{b} \mid S Y \\
& Y::=Z X \mathbf{b} \mid Y \mathbf{b} \\
& Z::=\boldsymbol{\varepsilon} \mid \mathbf{a}
\end{aligned}
$$

```
\(S^{\prime}, X^{\prime}, Y^{\prime}, Z^{\prime} \in\{0,1\}\)
0 - not nullable
1 - nullable
| -disjunction
\& - conjunction
```

$$
\begin{aligned}
& S^{\prime}=X^{\prime} \mid Y^{\prime} \\
& X^{\prime}=0 \mid\left(S^{\prime} \& Y^{\prime}\right) \\
& Y^{\prime}=\left(Z^{\prime} \& X^{\prime} \& 0\right) \mid\left(Y^{\prime} \& 0\right) \\
& Z^{\prime}=1 \mid 0
\end{aligned}
$$

	S^{\prime}	X^{\prime}	Y^{\prime}	Z^{\prime}
1.	0	0	0	0
2.	0	0	0	1
3.	0	0	0	1

again monotonically growing

Computing first and nullable

- Given any grammar we can compute
- for each non-terminal X whether nullable(X)
- using this, the set first(X) for each non-terminal X
- General approach:
- generate constraints over finite domains, following the structure of each rule
- solve the constraints iteratively
- start from least elements
- keep evaluating RHS and re-assigning the value to LHS
- stop when there is no more change

Summary: Algorithm for nullable

```
nullable = {}
changed = true
while (changed) {
    changed = false
    for each non-terminal X
    if (( }\textrm{X}\mathrm{ is not nullable) and
        (grammar contains rule X ::= \varepsilon| ... )
            or (grammar contains rule X ::= Y1 ... Yn | ...
                where {Y1,\ldots.,Yn} \subseteq nullable)
    then {
        nullable = nullable U {X}
        changed = true
    }
```


Summary: Algorithm for first

for each nonterminal X : first $(X)=\{ \}$
for each terminal t : first $(t)=\{t\}$
repeat
for each grammar rule $X::=Y(1) \ldots Y(k)$
for $i=1$ to k
if $i=1$ or $\{Y(1), \ldots, Y(i-1)\} \subseteq$ nullable then
first $(X)=$ first $(X) U$ first($Y(i))$
until none of first(...) changed in last iteration

Follow sets. LL(1) Parsing Table

Exercise Introducing Follow Sets

Compute nullable, first for this grammar:
stmtList ::= \quad | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
Describe a parser for this grammar and explain how it behaves on this input:
beginof myPrettyCode

$$
\begin{aligned}
& x=u ; \\
& y=v ;
\end{aligned}
$$

myPrettyCode ends

How does a recursive descent parser look like?

```
def stmtList =
    if (???) {} what should the condition be?
    else { stmt; stmtList }
def stmt =
    if (lex.token == ID) assign
    else if (lex.token == beginof) block
    else error("Syntax error: expected ID or beginonf")
def block =
    { skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }
```


Problem Identified

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
Problem parsing stmtList:

- ID could start alternative stmt stmtList
- ID could follow stmt, so we may wish to parse $\boldsymbol{\varepsilon}$ that is, do nothing and return
- For nullable non-terminals, we must also compute what follows them

LL(1) Grammar - good for building recursive descent parsers

- Grammar is $\operatorname{LL}(1)$ if for each nonterminal X
- first sets of different alternatives of X are disjoint
- if nullable(X), first(X) must be disjoint from follow(X) and only one alternative of X may be nullable
- For each LL(1) grammar we can build recursive-descent parser
- Each LL(1) grammar is unambiguous
- If a grammar is not LL(1), we can sometimes transform it into equivalent LL(1) grammar

Computing if a token can follow

$$
\begin{aligned}
& \text { first }\left(B_{1} \ldots B_{p}\right)=\left\{a \in \Sigma \mid B_{1} \ldots B_{p} \Rightarrow \ldots \Rightarrow \text { aw }\right\} \\
& \text { follow }(X)=\{a \in \Sigma \mid S \Rightarrow \ldots \Rightarrow \text {...Xa... }\}
\end{aligned}
$$

There exists a derivation from the start symbol that produces a sequence of terminals and nonterminals of the form ...Ха... (the token a follows the non-terminal X)

Rule for Computing Follow

Given $\quad X::=Y Z \quad$ (for reachable X)
then first $(Z) \subseteq$ follow (Y)
and follow $(\mathrm{X}) \subseteq$ follow (Z)
now take care of nullable ones as well:

For each rule $X::=Y_{1} \ldots Y_{p} \ldots Y_{q} \ldots Y_{r}$ follow $\left(Y_{p}\right)$ should contain:

- first $\left(Y_{p+1} Y_{p+2} \ldots Y_{r}\right)$
- also follow (X) if nullable $\left(Y_{p+1} Y_{p+2} Y_{r}\right)$

Compute nullable, first, follow

```
stmtList ::= \varepsilon | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends
```

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not $\operatorname{LL}(1)$ because we have

- nullable(stmtList)
- first(stmt) \cap follow(stmtList) $=\{$ ID $\}$
- If a recursive-descent parser sees ID, it does not know if it should
- finish parsing stmtList or
- parse another stmt

Table for LL(1) Parser: Example

S ::= B EOF

(1)

```
B ::= \varepsilon| B (B)
(1) (2)
```

nullable: B
first(S) $=\{$ (, EOF $\}$
follow $(S)=\{ \}$
first $(B)=\{(\}$
follow $(B)=\{$), (, EOF $\}$

1 is in entry because (is in follow(B)
2 is in entry because (is in first($B(B)$)

Table for LL(1) Parsing

Tells which alternative to take, given current token: choice : Nonterminal x Token -> Set[Int]

$$
\begin{aligned}
A::= & \text { (1) } B_{1} \ldots B_{p} \\
& \mid \text { (2) } C_{1} \ldots C_{q} \\
& \mid \text { (3) } D_{1} \ldots D_{r}
\end{aligned}
$$

if $t \in \operatorname{first}\left(C_{1} \ldots C_{q}\right)$ add 2
to choice (A, t)
if $t \in$ follow(A) add K to
choice(A, $t)$ where K is nullable

For example, when parsing A and seeing token t choice $(A, t)=\{2\}$ means: parse alternative $2 \quad\left(C_{1} \ldots C_{q}\right)$ choice $(A, t)=\{3\}$ means: parse alternative $3\left(D_{1} \ldots D_{r}\right)$ choice $(A, t)=\{ \} \quad$ means: report syntax error choice $(A, t)=\{2,3\}$: not $\operatorname{LL}(1)$ grammar

General Idea when parsing nullable(A)

$$
\begin{aligned}
& \operatorname{def} A= \\
& \text { if (token } \in T 1)\{ \\
& B_{1} \ldots B_{p} \\
& \text { else if (token } \left.\in\left(T 2 \cup T_{F}\right)\right)\{ \\
& C_{1} \ldots C_{q} \\
& \} \text { else if (token } \in T 3)\{ \\
& D_{1} \ldots D_{r} \\
& \} / / \text { no else error, just return }
\end{aligned}
$$

where:

$$
\begin{aligned}
& T 1=\operatorname{first}\left(B_{1} \ldots B_{p}\right) \\
& T 2=\operatorname{first}\left(C_{1} \ldots C_{q}\right) \\
& T 3=\operatorname{first}\left(D_{1} \ldots D_{r}\right) \\
& T_{F}=\operatorname{follow}(A)
\end{aligned}
$$

Only one of the alternatives can be nullable (here: 2 nd)
$\mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T}_{\mathrm{F}}$ should be pairwise disjoint sets of tokens.

