
Translating Control Using Branch Destination Parameters

Translating control flow structures more efficiently

Introduce an imaginary large instruction branch(c,nThen,nElse).

Here c is a potentially complex boolean expression (the main reason why branch
is not a built-in bytecode instruction),
whereas nTrue and nFalse are the labels we jump to depending on the boolean
value of c.

We will show how to
� use branch to compile if and short-circuiting operators,
� by expanding branch recursively into concrete bytecode instructions.

Translating control flow structures more efficiently

[if (econd) ethen else eelse] :=

block nAfter
block nElse
block nThen
branch(econd, nThen, nElse)

end //nThen:
[ethen]
br nAfter

end //nElse:
[eelse]

end //nAfter:
[erest]

Decomposing conditions in branch

branch(! e,nThen,nElse) :=
branch(e,nElse,nThen)

branch(e1 && e2,nThen,nElse) :=
block nLong
branch(e1,nLong,nElse)

end //nLong:
branch(e2,nThen,nElse)

branch(e1 � e2,nThen,nElse) :=
block nLong
branch(e1,nThen,nLong)

end //nLong:
branch(e2,nThen,nElse)

Decomposing conditions in branch

branch(true,nThen,nElse) :=
br nThen

branch(false,nThen,nElse) :=
br nElse

branch(b,nThen,nElse) := (where b is a local var)
get_local #b
br_if nThen
br nElse

Decomposing conditions in branch

branch(e1 == e2,nThen,nElse) := (where e1, e2 are of type int)
[e1]
[e2]
i32.eq
br_if nThen
br nElse

... analogously for other relations

Returning the result from branch
Consider storing x = c
where x, c are boolean and c contains && or �.

How do we put the result of c on the stack so it can be stored in x?
[x = c] :=
block nAfter
block nElse
block nThen
branch(c,nThen,nElse)

end //nThen:
i32.const 1
br nAfter

end //nElse:
i32.const 0

end //nAfter:
set_local #x

Destination label parameters

Recall that in branch(c,nThen,nElse) we had two arguments nThen and
nElse, which told us where to jump to execute code of the corresponding
branches.

Similarly, up until now we explicitly enclosed our translated program fragments in
an nAfter block, so we could jump to the “rest” of the program.

Destination label parameters

Recall that in branch(c,nThen,nElse) we had two arguments nThen and
nElse, which told us where to jump to execute code of the corresponding
branches.

Similarly, up until now we explicitly enclosed our translated program fragments in
an nAfter block, so we could jump to the “rest” of the program.

⇒ We can generalize our translation function [·] to take a destination label
designating the “rest” in the surrounding code.

Destination label parameters

Recall that in branch(c,nThen,nElse) we had two arguments nThen and
nElse, which told us where to jump to execute code of the corresponding
branches.

Similarly, up until now we explicitly enclosed our translated program fragments in
an nAfter block, so we could jump to the “rest” of the program.

⇒ We can generalize our translation function [·] to take a destination label
designating the “rest” in the surrounding code.

[·] ⇒ [·] nAfter

⇒ The caller of the translation function determines where to continue!

Translations with an nAfter label parameter (1)

[x = e] nAfter :=
block nSet

[e] nSet
// note that the rest of this block is never reached!

end //nSet:
set_local #x
br nAfter

[s1; s2] nAfter :=
block nSecond

[s1] nSecond
end //nSecond:
[s2] nAfter

Translations with an nAfter label parameter (2)

[if (econd) ethen else eelse] nAfter :=
block nElse
block nThen
branch(econd,nThen,nElse)

end //nThen:
[ethen] nAfter

end //nElse:
[eelse] nAfter

[return e] nAfter :=
block nRet

[e] nRet
end //nRet:
return

Switch statements

Let us assume our language had a switch statement (like C and Java do, for
instance):
switch (escrutinee) {
case c1: e1
...
case cn: en

default: edefault

}

� How can we compile such switch statements?

Compiling switch statements
[sswitch] nAfter :=
block nDefault
block nCasen

...
block nCase1
block nTest

[escrutinee] nTest
end //nTest:
tee_local #s (where s is some fresh local of type i32)
i32.const c1; i32.eq; br_if nCase1
get_local #s
i32.const c2; i32.eq; br_if nCase2
...
br nDefault

end //nCase1:
[e1] nCase2

...
end //nCasen:
[en] nDefault

end //nDefault:
[edefault] nAfter

Compiling switch statements
[sswitch] nAfter :=
block nDefault
block nCasen

...
block nCase1
block nTest

[escrutinee] nTest
end //nTest:
tee_local #s (where s is some fresh local of type i32)
i32.const c1; i32.eq; br_if nCase1
get_local #s
i32.const c2; i32.eq; br_if nCase2
...
br nDefault

end //nCase1:
[e1] nCase2

...
end //nCasen:
[en] nDefault

end //nDefault:
[edefault] nAfter

� How do we translate break?

Compiling switch statements

At any point during the translation of switch we want to keep track not only
where to jump after, but also where to jump on a break!

Compiling switch statements

At any point during the translation of switch we want to keep track not only
where to jump after, but also where to jump on a break!

⇒ Let us extend the translation function by another label parameter.

Compiling switch statements

At any point during the translation of switch we want to keep track not only
where to jump after, but also where to jump on a break!

⇒ Let us extend the translation function by another label parameter.

[·] nAfter ⇒ [·] nAfter nBreak

⇒ The caller of the translation function determines where to continue in the
“normal” case, but also when break is called!

Compiling switch statements

Translating break then is straightforward: One simply ignores nAfter and
follows nBreak instead.

[break] nAfter nBreak :=
br nBreak

� What do we have change in our translation of switch statements?

Compiling switch statements with breaks
[sswitch] nAfter nBreak :=
block nDefault
block nCasen

...
block nCase1
block nTest

[escrutinee] nTest nBreak
end //nTest:
tee_local #s (where s is some fresh local of type i32)
i32.const c1; i32.eq; br_if nCase1
get_local #s
i32.const c2; i32.eq; br_if nCase2
...
br nDefault

end //nCase1:
[e1] nCase2 nAfter

...
end //nCasen:
[en] nDefault nAfter

end //nDefault:
[edefault] nAfter nAfter

Translating While Statement

Consider translation of the while statement, which gets ’nextLabel’ destination,
specifying where to jump when exiting the loop.
We assume that the instructions emitted are inside the block that introduced
nextLabel.

What is the translation schema?

[while (cond) stmt] nextLabel =

Translating While Statement

Consider translation of the while statement, which gets ’nextLabel’ destination,
specifying where to jump when exiting the loop.
We assume that the instructions emitted are inside the block that introduced
nextLabel.

What is the translation schema?

[while (cond) stmt] nextLabel =
loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextLabel)

end // bodyLabel
[stmt] startLabel

end

break Statement

In many languages, a break statement can be used to exit from the loop. For
example, it is possible to write code such as this:

while (cond1) {
code1
if (cond2) break;
code2

}

Loop executes code1 and checks the condition cond2. If condition holds, it
exists. Otherwise, it continues and executes code2 and then goes to the
beginning of the loop, repeating the process.

Give translation scheme for this loop construct and explain how the translation of
other constructs needs to change.

break Statement - Propagating Exit Label

For a break statement to know where to jump, it needs to be given a label
indicating the exit of the loop. When we translate a statement (such as if)
potentially containing break, the translation of this statement needs both the
parameter to pass on to break as well as the parameter to jump to during
normal execution. Therefore, each statement needs two destination parameters:
the ’nextLabel’ and the ’loopExit’ label. For example,

[if (cond) thenC else elseC] nextL loopExitL =

break Statement - Propagating Exit Label

For a break statement to know where to jump, it needs to be given a label
indicating the exit of the loop. When we translate a statement (such as if)
potentially containing break, the translation of this statement needs both the
parameter to pass on to break as well as the parameter to jump to during
normal execution. Therefore, each statement needs two destination parameters:
the ’nextLabel’ and the ’loopExit’ label. For example,

[if (cond) thenC else elseC] nextL loopExitL =
block elseL
block thenL
branch(cond, thenL, elseL)

end // thenL
[thenC] nextL loopExitL

end // elseL
[elseC] nextL loopExitL

break Statement - Using and Setting Labels

Translating break:
[break] nextLabel loopExitLabel =

break Statement - Using and Setting Labels

Translating break:
[break] nextLabel loopExitLabel =
br loopExitLabel

break Statement - Using and Setting Labels

Translating break:
[break] nextLabel loopExitLabel =
br loopExitLabel

Translating while:
[while (cond) stmt] nextLabel loopExitLabel =

break Statement - Using and Setting Labels

Translating break:
[break] nextLabel loopExitLabel =
br loopExitLabel

Translating while:
[while (cond) stmt] nextLabel loopExitLabel =
loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextLabel)

end // bodyLabel
[stmt]

break Statement - Using and Setting Labels

Translating break:
[break] nextLabel loopExitLabel =
br loopExitLabel

Translating while:
[while (cond) stmt] nextLabel loopExitLabel =
loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextLabel)

end // bodyLabel
[stmt] startLabel

break Statement - Using and Setting Labels

Translating break:
[break] nextLabel loopExitLabel =
br loopExitLabel

Translating while:
[while (cond) stmt] nextLabel loopExitLabel =
loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextLabel)

end // bodyLabel
[stmt] startLabel nextLabel

end

break Statement - Using and Setting Labels

Translating break:
[break] nextLabel loopExitLabel =
br loopExitLabel

Translating while:
[while (cond) stmt] nextLabel loopExitLabel =
loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextLabel)

end // bodyLabel
[stmt] startLabel nextLabel

end

What if we want to have continue that goes to beginning of the loop?

Loops with break and continue
Translating break:

[break] nextL loopExitL loopStartL =
br loopExitL

Translating continue:
[continue] nextL loopExitL loopStartL =
br loopStartL

Translating while:
[while (cond) stmt] nextL loopExitL loopStartL =
loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextL)

end // bodyLabel
[stmt] startLabel nextL startLabel

end

Explain difference between labels loopStartL and startLabel

