
Constant Propagation Transfer Functions

x = y + z

For each variable (x,y,z) and
each CFG node (program point)
we store:  , a constant, or T

abstract class Element

case class Top extends Element

case class Bot extends Element

case class Const(v:Int) extends Element

var facts : Map[Nodes,Map[VarNames,Element]]

what executes during analysis of x=y+z:

oldY = facts(v1)("y")

oldZ = facts(v1)("z")

newX = tableForPlus(oldY, oldZ)

facts(v2) = facts(v2) join facts(v1).updated("x", newX)

def tableForPlus(y:Element, z:Element)

= (x,y) match {

case (Const(cy),Const(cz)) =>

Const(cy+cz)

case (Bot,_) => Bot

case (_,Bot) => Bot

case (Top,Const(cz)) => Top

case (Const(cy),Top) => Top

}

table for +:

Run Constant Propagation

x = 1

while (x < n) {
x = x + 2

}

n = 1000

What is the number of updates?

x = 1

n = readInt()

while (x < n) {

x = x + 2

}

Observe

• Range analysis with end points
W = {-128, 0, 127} has a finite domain

• Constant propagation has infinite domain
(for every integer constant, one element)

• Yet, constant propagation finishes sooner!

– it is not about the size of the domain

– it is about the height

Height of Lattice: Length of Max. Chain

∞

∞

∞ ∞

∞

∞
∞ ∞T

T



10-1-2 2

height=2

size =∞

height=5

size=14

… …

Chain of Length n

• A set of elements x0,x1 ,..., xn in D that are linearly
ordered, that is x0 < x1 < ... < xn

• A lattice can have many chains. Its height is the
maximum n for all the chains

• If there is no upper bound on lengths of chains,
we say lattice has infinite height

• Any monotonic sequence of distinct elements has
length at most equal to lattice height
– including sequence occuring during analysis!

– such sequences are always monotonic

In constant propagation, each value can
change only twice

x = 1

n = 1000

while (x < n) {

x = x + 2

}



10-1-2 2

height=2

size =∞ … …

consider value for x

before assignment

• Initially: 

• changes 1st time to: 1

• change 2nd time to: T
total changes: two (height)

var facts : Map[Nodes,Map[VarNames,Element]]

T

Total number of changes bounded by: height∙|Nodes| ∙|Vars|

Exercise

B32 – the set of all 32-bit integers

What is the upper bound for number of changes in
the entire analysis for:

– 3 variables,

– 7 program points

for these two analyses:

1) constant propagation for constants from B32

2) The following domain D:

D = {} U { [a,b] | a,b B32 , a ≤ b}

Height of B32

D = {} U { [a,b] | a,b B32 , a ≤ b}

One possible chain of maximal length:



…

[MinInt,MaxInt]

Initialization Analysis

uninitialized

first

initialization

initialized

What does javac say to this:
class Test {

static void test(int p) {

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

while (n != 0) {

System.out.println(n);

n = n - p;

}

}

}

Test.java:8: variable n might not have been initialized

while (n > 0) {

^

1 error

Program that compiles in java
class Test {

static void test(int p) {

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

else {

n = -100;

}

while (n != 0) {

System.out.println(n);

n = n - p;

}

}

}

We would like variables to be

initialized on all execution paths.

Otherwise, the program execution

could be undesirably affected by

the value that was in the variable

initially.

We can enforce such check using

initialization analysis.

What does javac say to this?

static void test(int p) {

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

System.out.println(“Hello!”);

if (p > 0) {

while (n != 0) {

System.out.println(n);

n = n - p;

}

}

}

Initialization Analysis
T indicates presence of flow from states where
variable was not initialized:

• If variable is possibly uninitialized, we use T

• Otherwise (initialized, or unreachable): 

class Test {

static void test(int p) {

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

else {

n = -100;

}

while (n != 0) {

System.out.println(n);

n = n - p;

}

}

}
If var occurs anywhere but left-hand side

of assignment and has value T, report error

Sketch of Initialization Analysis

• Domain: for each variable, for each program point:
D = {,T}

• At program entry, local variables: T ; parameters: 

• At other program points: each variable: 

• An assignment x = e sets variable x to 

• lub (join,) of any value with T gives T

– uninitialized values are contagious along paths

–  value for x means there is definitely no possibility for
accessing uninitialized value of x

Run initialization analysis Ex.1

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

while (n != 0) {

n = n - p;

}

Run initialization analysis Ex.2

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

if (p > 0) {

n = n - p;

}

Liveness Analysis

dead

live

dead

last use

first

initialization

dead
live

Variable is dead if its current value will not be used in the future.
If there are no uses before it is reassigned or the execution ends,
then the variable is surely dead at a given point.

Example:

x = y + x

if (x > y)

What is Written and What Read

Purpose:
Register allocation:

find good way to decide
which variable should go
to which register at what
point in time.

How Transfer Functions Look

Initialization: Forward Analysis

Liveness: Backward Analysis

while (there was change)
pick edge (v1,statmt,v2) from CFG

such that facts(v1) has changed
facts(v2)=facts(v2) join transferFun(statmt, facts(v1))

}

while (there was change)

pick edge (v1,statmt,v2) from CFG

such that facts(v2) has changed

facts(v1)=facts(v1) join transferFun(statmt, facts(v2))

}

Example

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

res1 = xy + yz

m[3] = res1 + xz

Kinds of Memory in Compiled Programs
Program Data Typical Machine Representation

intermediate values registers, stack
local variables, parameters registers, stack

return addresses of function calls stack (+ 1 register)
global variables data segment, pre-allocated

algebraic data type values dynamic heap
objects dynamic heap

closures (first class functions) dynamic heap
Pre-allocated memory has fixed size at compile time
Stack can grow, but must shrink in the LIFO way

Heap is most general: allocate and deallocate in any order
▶ if we never de-allocate (as in the project), can use a stack separate from the stack

for locals and returns
▶ but never de-allocating leads to out-of-memory errors

Memory as Array

Languages like C traditionally give full access to program memory through pointers
that can be manipulated (can even write to stack)
In C, the heap can be implemented as a library with malloc and free, and that uses
operating system calls to obtain large blocks of available memory, then treats them as
large arrays of bytes.
typedef struct node { // size 8 bytes

int content; // offset 0
struct node * next; // offset 4

} node_t;
head = malloc(sizeof(node_t)); // head = 8 bytes on heap
head -> content = 42; // RAM[head] = 42
second = malloc(sizeof(node_t)); // second = get 8bytes
head -> next = second; // RAM[head + 4] = second

Malloc and Free Using Free List
Need to know which memory is used and which is fresh.
Because allocation and de-allocation is in any order, memory array has interleaved
regions of allocated and free memory.
Approach:
▶ allocated memory is responsibility of the program
▶ create a list of free blocks using only free memory!

What is free and unused memory for the application is a linked list data structure for
the allocator
▶ list elements are variable length: size stored in each block
▶ allocation: find a sufficient block, split it, update the free list, return the split of

part
▶ deallocation inserts the block into list, if possible merge with adjacent blocks

See also:
▶ Lectures of David August at This Link
▶ D. Knuth, The Art of Computer Programming, Vol. 1, ”Dynamic Storage

Allocation”

https://www.cs.princeton.edu/courses/archive/fall07/cos217/lectures/14Memory-2x2.pdf

Lack of Memory Safety

Using pointers is flexible and easy to compile: emit memory access instructions and
library calls to malloc and free.
▶ but it is not memory safe!

long* x = malloc(...);
*x = 9876543;
free(x);
// x is now dangling pointer
long* y = malloc(...);
*y = 1234567;
// y might use part of same memory as x
*x = 0;
// now *y may be changed and even corrupted

To ensure memory safety: cannot allow developer to use ’free’ arbitrarily
▶ we want automated memory management

Automated Memory Management

Reference counting: maintain a field in each heap object that counts how many
references to this object exist.
x.f = y

becomes:
x.f.count--;
if (x.f.count==0) deallocate(x.f)
y.count++;
x.f=y

Deallocation also decrements references and can recursively deallocate other objects.
This works as long as there are no cycles.
See: Automatic Reference Counting in Swift

Forms of compile time reference counting in Rust: Ownership, References and
Borrowing

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://doc.rust-lang.org/1.8.0/book/ownership.html
https://doc.rust-lang.org/1.8.0/book/references-and-borrowing.html
https://doc.rust-lang.org/1.8.0/book/references-and-borrowing.html

Garbage Collection

To automatically collect cyclic data structures and convenient functional programming
with sharing data we use garbage collection (already introduced in LISP).
Periodically mark all objects reachable from global and local variables of all stack
frames, free up the rest as garbage

Two main types of garbage collection algorithms:
▶ mark and sweep: mark all reachable objects and put them in a free list (good if

there is little garbage, but suffers from fragmentation)
▶ copying collector: use twice the space; after marking, copy all useful data into a

separate region and put blocks next to each other
Generational collector: organize objects by generations, collect newly allocated objects
more often, if they survive multiple collections, promote them to older generation.
Typically used in Java: generational parallel and concurrent copying collector

Compiler Support for Garbage Collection

Garbage collector needs to know:
▶ how to find roots in global variables, stack, registers

(or ensure references are never only in registers)
▶ how to follow (non-weak) references through objects

For this, some amount of run-time type information is needed.
Generational GC may need to traverse all older generations to know what is alive in
new generation. To speed this up, GC can use information that ensures that certaing
groups of objects do not point to newer generation. To maintain that information,
compiler may need to instrument all writes of object fields, with worst-case overhead
similar to that of reference counting.

Dynamic Dispatch
Dynamic dispatch is key to object-oriented languages.
It can also be used to implement higher-order functions.
class Animal {
def noise = ”squeak!”
def muchNoise = noise + noise

}
class Dog extends Animal {
override def noise = ”aw!”

}
d = new Dog
d.muchNoise

res0: String = aw!aw!

Compilation of muchNoise cannot make a direct call to method that returns
”squeak!” but must invoke whatever method is most specific to the dynamic type of
the object given by new declaration.
⇝ virtual method table

https://en.wikipedia.org/wiki/Virtual_method_table

Dynamic Dispatch Implementation

type Animal = struct { vtable : FunPtrs[] }
def Animal_noise(this:Animal) = return ”squeak!”
def Animal_muchNoise(this:Animal) =
(this -> vtable)[0](this) +
(this -> vtable)[0](this)

type Dog = struct { vtable : FunPtrs[] }

def Dog_noise(this:Dog) = return ”aw!”

Animal_vtable[] = { Animal_noise, Animal_muchNoise }
Dog_vtable[] = { Dog_noise, Animal_muchNoise }

d = malloc(Dog)
d -> vtable = Dog_vtable
(d -> vtable)[1](d) // 1 is the index of muchNoise

Virtual methods calls have one extra indirection (even more for multiple inheritance)

First-Class Functions as Objects: Capturing Vals
val f = {
val x = 42
((y:Int) => x + y) // Closure_1

}
f(20)

becomes:
abstract class Function[A-,B+] {
def apply(x:A): B

}
class Closure_1(x:Int) extends Function {
def apply(y: Int): Int = x + y

}
val f = {

val x = 42
new Closure_1(x)

}
f.apply(20)

Capturing Vars

val f = { // Block_2
var x = 42
((y:Int) => x + y; x++) // Closure_2

}
f(20) + f(0)

becomes:
class Block_2_Vars { var x: Int = _ }
class Closure_2(block: Block_2_Vars) extends Function {
def apply(y: Int): Int = { block.x + y; block.x++ }

}
val f = {

val block2 = new Block_2_Vars
block2.x = 42
new Closure_2(block2)

}
f.apply(20) + f.apply(0)

Code Specialization (Used in Scala.js)
By partially evaluating program at compile time, we can specialize its parts and
generate more efficient code.

Such transformation can be done automatically or under user control using, for
example, staged computation, macros, templates.
def fold(l: List[A], b: B, f : (A,B) => B): B = l match {

case Nil => b
case x::xs => f(x, fold(xs,b,f))

}
fold(l, 0, _ + _)

⇓
def foldZeroPlus(l: List[A]): B = l match {

case Nil => 0
case x::xs => x + foldZeroPlus(xs) // no closure

}
foldZeroPlus(l)

Algebraic Transformations (Used in Glasgow Haskell Compiler)

Higher-order combinators such as map satisfy many laws that can be used for
optimization, including parallel execution.

Typically these laws hold only when functions are pure

list.map(f).map(g) == list.map(x => g(f(x)))

Type systems and program analyses for purity are an active areas of research.

If a language has mutable objects and allows their sharing, it is particularly difficult to
prove that a function behaves as pure: knowing if a modification is to auxiliary objects
or externally observable objects requires reasoning about possible heap configurations
(shape analysis, alias analysis).

