
Translating control flow structures more efficiently

[if (econd) ethen else eelse] :=

block nAfter
block nElse
block nThen
branch(econd, nThen, nElse)

end //nThen:
[ethen]
br nAfter

end //nElse:
[eelse]

end //nAfter:
[erest]
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Decomposing conditions in branch

branch(! e,nThen,nElse) :=
branch(e,nElse,nThen)

branch(e1 && e2,nThen,nElse) :=
block nLong
branch(e1,nLong,nElse)

end //nLong:
branch(e2,nThen,nElse)

branch(e1 ‖ e2,nThen,nElse) :=
block nLong
branch(e1,nThen,nLong)

end //nLong:
branch(e2,nThen,nElse)
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Decomposing conditions in branch

branch(true,nThen,nElse) :=
br nThen

branch(false,nThen,nElse) :=
br nElse

branch(b,nThen,nElse) := (where b is a local var)
get_local #b
br_if nThen
br nElse
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Decomposing conditions in branch

branch(e1 == e2,nThen,nElse) := (where e1, e2 are of type int)
[e1]
[e2]
i32.eq
br_if nThen
br nElse

... analogously for other relations
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Returning the result from branch
Consider storing x = c
where x, c are boolean and c contains && or ‖.

How do we put the result of c on the stack so it can be stored in x?
[x = c] :=
block nAfter
block nElse
block nThen
branch(c,nThen,nElse)

end //nThen:
i32.const 1
br nAfter

end //nElse:
i32.const 0

end //nAfter:
set_local #x
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Destination label parameters

Recall that in branch(c,nThen,nElse) we had two arguments nThen and
nElse, which told us where to jump to execute code of the corresponding
branches.

Similarly, up until now we explicitly enclosed our translated program fragments in
an nAfter block, so we could jump to the “rest” of the program.

⇒ We can generalize our translation function [ · ] to take a destination label
designating the “rest” in the surrounding code.

[ · ] ⇒ [ · ] nAfter

⇒ The caller of the translation function determines where to continue!
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Translations with an nAfter label parameter (1)

[x = e] nAfter :=
block nSet

[e] nSet
// note that the rest of this block is never reached!

end //nSet:
set_local #x
br nAfter

[s1; s2] nAfter :=
block nSecond

[s1] nSecond
end //nSecond:
[s2] nAfter
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Translations with an nAfter label parameter (2)

[if (econd) ethen else eelse] nAfter :=
block nElse
block nThen
branch(econd,nThen,nElse)

end //nThen:
[ethen] nAfter

end //nElse:
[eelse] nAfter

[return e] nAfter :=
block nRet

[e] nRet
end //nRet:
return
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Switch statements

Let us assume our language had a switch statement (like C and Java do, for
instance):
switch (escrutinee) {
case c1: e1
...
case cn: en

default: edefault

}

. How can we compile such switch statements?
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Compiling switch statements
[sswitch] nAfter :=
block nDefault
block nCasen

...
block nCase1
block nTest

[escrutinee] nTest
end //nTest:
tee_local #s (where s is some fresh local of type i32)
i32.const c1; i32.eq; br_if nCase1
get_local #s
i32.const c2; i32.eq; br_if nCase2
...
br nDefault

end //nCase1:
[e1] nCase2

...
end //nCasen:
[en] nDefault

end //nDefault:
[edefault] nAfter

. How do we translate break?
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Compiling switch statements
[sswitch] nAfter :=
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Compiling switch statements

At any point during the translation of switch we want to keep track not only
where to jump after, but also where to jump on a break!

⇒ Let us extend the translation function by another label parameter.

[ · ] nAfter ⇒ [ · ] nAfter nBreak

⇒ The caller of the translation function determines where to continue in the
“normal” case, but also when break is called!
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Compiling switch statements

Translating break then is straightforward: One simply ignores nAfter and
follows nBreak instead.

[break] nAfter nBreak :=
br nBreak

. What do we have change in our translation of switch statements?
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Compiling switch statements with breaks
[sswitch] nAfter nBreak :=
block nDefault
block nCasen

...
block nCase1
block nTest

[escrutinee] nTest nBreak
end //nTest:
tee_local #s (where s is some fresh local of type i32)
i32.const c1; i32.eq; br_if nCase1
get_local #s
i32.const c2; i32.eq; br_if nCase2
...
br nDefault

end //nCase1:
[e1] nCase2 nAfter

...
end //nCasen:
[en] nDefault nAfter

end //nDefault:
[edefault] nAfter nAfter
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Translating While Statement

Consider translation of the while statement, which gets ’nextLabel’ destination,
specifying where to jump when exiting the loop.
We assume that the instructions emitted are inside the block that introduced
nextLabel.

What is the translation schema?

[ while (cond) stmt ] nextLabel =

loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextLabel)

end // bodyLabel
[ stmt ] startLabel

end
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break Statement

In many languages, a break statement can be used to exit from the loop. For
example, it is possible to write code such as this:

while (cond1) {
code1
if (cond2) break;
code2

}

Loop executes code1 and checks the condition cond2. If condition holds, it
exists. Otherwise, it continues and executes code2 and then goes to the
beginning of the loop, repeating the process.

Give translation scheme for this loop construct and explain how the translation of
other constructs needs to change.
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break Statement - Propagating Exit Label

For a break statement to know where to jump, it needs to be given a label
indicating the exit of the loop. When we translate a statement (such as if)
potentially containing break, the translation of this statement needs both the
parameter to pass on to break as well as the parameter to jump to during
normal execution. Therefore, each statement needs two destination parameters:
the ’nextLabel’ and the ’loopExit’ label. For example,

[ if (cond) thenC else elseC ] nextL loopExitL =

block elseL
block thenL
branch(cond, thenL, elseL)

end // thenL
[thenC] nextL loopExitL

end // elseL
[elseC] nextL loopExitL
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break Statement - Using and Setting Labels

Translating break:
[ break ] nextLabel loopExitLabel =

br loopExitLabel

Translating while:
[ while (cond) stmt ] nextLabel loopExitLabel =
loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextLabel)

end // bodyLabel
[ stmt ] startLabel nextLabel

end

What if we want to have continue that goes to beginning of the loop?
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Loops with break and continue
Translating break:

[ break ] nextL loopExitL loopStartL =
br loopExitL

Translating continue:
[ continue ] nextL loopExitL loopStartL =
br loopStartL

Translating while:
[ while (cond) stmt ] nextL loopExitL loopStartL =
loop startLabel
block bodyLabel
branch(cond, bodyLabel, nextL)

end // bodyLabel
[ stmt ] startLabel nextL startLabel

end

Explain difference between labels loopStartL and startLabel
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Basic Instructions of Register Machines

R
i
 ← Mem[R

j
]load

Mem[R
j
] ←R

i
store

R
i
 ← R

j 
 * R

k
compute: for an operation *

Efficient register machine code uses as few 
loads and stores as possible.



State Mapped to Register Machine
Both dynamically allocated heap and stack expand 
Heap is more general: 
• Can allocate, read/write, deallocate, in any order
• Garbage Collector does deallocation automatically

– Must be able to find free space among used one, group 
free blocks into larger ones (compaction),…

Stack is efficient: top of stack pointer (SP) is a register
• allocation is simple: increment, decrement 
• to allocate N bytes on stack (push):    SP := SP - N 
• to deallocate N bytes on stack (pop): SP := SP + N 

Stack

Heap

Constants
Static Globals

free memory

SP

0
50kb

10MB

Exact picture varies 
depend on hardware, 
OS, language runtime

1 GB



WASM vs General Register Machine Code
Naïve Correct Translation

R1 ← Mem[SP]
SP = SP + 4
R2 ← Mem[SP]
R2 ← R1 * R2
Mem[SP] ← R2

imul.32
WASM: Register Machine:



Register Allocation



How many variables? x,y,z,xy,xz,res1

x = m[0]
y = m[1]
xy = x * y
z = m[2]
yz = y*z
xz = x*z
res1 = xy + yz
m[3] = res1 + xz

Do we need 7 distinct registers if we wish to avoid load and stores?

x = m[0]
y = m[1]
xy = x * y
z = m[2]
yz = y*z
y = x*z      // reuse y
x = xy + yz    // reuse x
m[3] = x + y

can do it with 5 only!7 variables:
x,y,z,xy,yz,xz,res1



Idea of Register Allocation

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}      {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}                    
{}

live variable analysis result:

program:



Color Variables
Avoid Overlap of Same Colors
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y
z
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R1
R2
R3
R4

Each color denotes a register
4 registers are enough for this program



Color Variables
Avoid Overlap of Same Colors

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}      {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}                    
{}

live variable analysis result:

program:

R1
R2
R3
R4

Each color denotes a register
4 registers are enough for this 7-variable program

y yz
x

z xz

xy r



How to assign colors to variables?

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}     {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}                    
{}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a 
point at which they are both alive.
Construct interference graph

y yz

x
z

xzxy

r



Edges between members of each set

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}     {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}                    {}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a 
point at which they are both alive.
Construct interference graph

y yz

x
z

xzxy

r



Final interference graph

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}     {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}                    {}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a 
point at which they are both alive.
Construct interference graph

y yz

x
z

xzxy

r



Coloring interference graph

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}     {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}                    {}

live variable analysis result:

program:

Need to assign colors (register numbers) to
nodes such that: 
if there is an edge between nodes, 
then those nodes have different colors.
→ standard graph vertex coloring problem

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4



Idea of Graph Coloring

• Register Interference Graph (RIG):
– indicates whether there exists a point of time 

where both variables are live

– look at the sets of live variables at all progrma 
points after running live-variable analysis

– if two variables occur together, draw an edge

– we aim to assign different registers to such these 
variables

– finding assignment of variables to K registers: 
corresponds to coloring graph using K colors



All we need to do is 
solve graph coloring problem

• NP hard
• In practice, we have heuristics that work for typical graphs
• If we cannot fit it all variables into registers, 

perform a spill:
store variable into memory and load again before using

y yz

x
z

xz
xy

r



Heuristic for Coloring with K Colors

Simplify:
If there is a node with less than K neighbors, we will always be able to color it! 
So we can remove such node from the graph (if it exists, otherwise remove other node)
   This reduces graph size. It is useful, even though incomplete 
    (e.g. planar can be colored by at most 4 colors, yet can have nodes with many neighbors)

y yz

x
z

xzxy

r y yz

x
z

xzxy

y yz

x
z

xy

y

x
z

xy

y

z

xy

y

zz



Heuristic for Coloring with K Colors

Select
Assign colors backwards, adding nodes that were removed 
If the node was removed because it had <K neighbors, we will always find a color

if there are multiple possibilities, we can choose any color

y:2 yz:2

x:1
z:3

xz:3
xy:4

y:2 yz:2

x:1
z:3

xy:4

y:2

x:1
z:3

xy:4

y:2

z:3

xy:4

y:2

z:3z:3

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4



Use Computed Registers

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

r = xy + yz

m[3] = res1 + xz

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4 R1 = m[0]
R2 = m[1]

R4 = R1*R2

R3 = m[2]

R2 = R2*R3

R3 = R1*R3

R4 = R4 + R2

m[3] = R4 + R3



Summary of Heuristic for Coloring

Simplify (forward, safe):
If there is a node with less than K neighbors, we will always be able to color it! 
so we can remove it from the graph

Potential Spill (forward, speculative):
If every node has K or more neighbors, we still remove one of them 
we mark it as node for potential spilling. Then remove it and continue

Select (backward):
Assign colors backwards, adding nodes that were removed 

If we find a node that was spilled, we check if we are lucky, that we can color it.
if yes, continue

if not, insert instructions to save and load values from memory (actual spill).
   Restart with new graph (a graph is now easier to color as we killed a variable)



Conservative Coalescing
Suppose variables tmp1 and tmp2 are both assigned to the same register 
R and the program has an instruction:

tmp2 = tmp1
which moves the value of tmp1 into tmp2. This instruction then becomes

R = R
which can be simply omitted!
How to force a register allocator to assign tmp1 and tmp2 to same 
register?
    merge the nodes for tmp1 and tmp2 in the interference graph!
    this is called coalescing
But: if we coalesce non-interfering nodes when there are assignments, 
then our graph may become more difficult to color, and we may in fact 
need more registers!
Conservative coalescing: coalesce only if merged node of tmp1 and tmp2 
will have a small degree so that we are sure that we will be able to color 
it (e.g. resulting node has degree < K)



Run Register Allocation
use 3 registers, coalesce j=i

i = 0

s = s + i

i = i + b

j = i

s = s + j + b

j = j + 1



Run Register Allocation
use 3 registers, coalesce j=i

{s,b}
i = 0

{s,i,b}
s = s + i

{s,i,b}
i = i + b

{s,i,b}
j = i

{s,j,b}
s = s + j + b

{j}
j = j + 1

{}

s i

j b

s i,j

b

coalesce

color

s:1 i,j:2

b:3



Run Register Allocation
use 3 registers, coalesce j=i

i = 0

s = s + i
i = i + b
j = i  // puf!
s = s + j + b
j = j + 1

R2 = 0

R1 = R1 + R2
R2 = R2 + R3

R1 = R1 + R2 + R3

R2 = R2 + 1

s:1 i,j:2

b:3


