[d3=0
while (id3 < 10) {
println(“”,id3); after each analysis the compiler has a

15 — 1 better “understanding” of the input program;
id3=id3+1} can report more subtle errors

source code: sequence of characters

characters words trees
(tokens) t
Name Ana'ySiS: making sense of trees;

converting them into graphs:
connect identifier uses and declarations

Reporting Errors

Errors Detected So Far

File input: file does not exist

Lexer: unknown token, string not closed
before end of file, ...

Parser: syntax error - unexpected token,
cannot parse given non-terminal

Name analyzer: unknown identifier

Type analyzer:
applying function to arguments of wrong type

Data-flow analyzer:
variable read before written, division by zero

Name Analysis Problems Reported: 1

a class is defined more than once:
classA{...}classB{...}class A{... }
a variable is defined more than once:
int x; inty;int x;
a class member is overriden without override keyword:
class A {intx; ... } class Bextends A{int x; ... }

a method is overloaded (forbidden in Tool):
class A { def f(B x) {} def f(C x) {} ... }

a method argument is shadowed by a local variable declaration
(forbidden in Java, Tool):
def (x:Int) { var x : Int; ...}
two method arguments have the same name:
def (x:Int,y:Int,x:Int) { ... }

Name Analysis Problems Reported: 2

* aclass name is used as a symbol (as parent class or type, for instance)
but is not declared:
class A extends Objekt {}

* anidentifier is used as a variable but is not declared:
def(amount:Int) { total = total + ammount }

* the inheritance graph has a cycle:

class A extends B {}

class B extends C {}

class C extends A
To make it efficient and clean to check for such errors, we associate
mapping from each identifier to the symbol that the identifier
represents.

* We use Map data structures to maintain this mapping

* The rules that specify how declarations are used to construct such
maps are given by scoping rules of the programming language.

Storing and Using Tree Positions

Showing Good Errors with Syntax Trees

Suppose we have undeclared variable ‘i’ in a program of 100K lines
Which error message would you prefer to see from the compiler?

— An ocurrence of variable ‘i’ not declared (which variable? where?)

— An ocurrence of variable ‘i’ in procedure P not declared

— Variable ‘i’ undeclared at line 514, position 12 (and IDE points you there)¥
How to emit this error message if we only have a syntax trees?
* Abstract syntax tree nodes store positions within file
* For identifier nodes: allows reporting variable uses

— Variable 'i" in line 11, column 5 undeclared
* For other nodes, supports useful for type errors, e.g. could report

for (x+y)* (lok)
— Type error in line 13,
— expression in line 13, column 11-15, has type Bool, expected Int instead

Showing Good Errors with Syntax Trees

Constructing trees with positions:
— Lexer records positions for tokens

— Each subtree in AST corresponds to some parse tree,
so it has first and last token

— Get positions from those tokens
— Save these positions in the constructed tree

What is important is to save information for leaves

— information for other nodes can often be
approximated using information in the leaves

Continuing Name Analysis:
Scope of Identifiers

Example: find program result, symbols, scopes

class Example { | Scope of a variable = part of the program where it is visible |
boolean x;
inty: Draw an arrow from occurrence of
int z: each identifier to the point of its
’ declaration.

int compute(int x; int y) {
intz=3;
return x,+y +z;

For each declaration of identifier,
identify where the identifier can be
referred to (its scope).

}
public void main() { Name analysis:

int res; e computes those arrows

X = true; = maps, partial functions (math)

y = 10; = environments (PL theory)

7=17; = symbol table (implementation)

res = compute(z, z+1); * report some simple semantic errors

System.out.printin(res); We usually introduce symbols for things
} denoted by identifiers.

Symbol tables map identifiers to symbols.

Usual static scoping: What is the result?

class World {
int sum;
int value; s
void add() { Identifier refers to the symbol that
sum = sum + value; was declared “closest” to the place

, value =0; in program structure (thus "static").

void main() {

sum = 0; . . .
value = 10: We will assume static scoping
add(); unless otherwise specified.
if (sum % 3==1) {

int value;

value = 1;

add();

print("inner value = ", value); 1

print("sum =", sum); 10
}

print("outer value =", value); 0

Renaming Statically Scoped Program

class World {
int sum;
int value;
void add(int foo) {
sum = sum + value;
value = 0;

void main() {

sum = 0;

value = 10;

add();

if (sum % 3==1) {
int valuel;
valuel=1;
add(); // cannot change value1l
print("inner value = ", valuel); 1
print("sum =", sum); 10

}

print("outer value =", value); 0

Identifier refers to the symbol that
was declared “closest” to the place
in program structure (thus "static").

We will assume static scoping
unless otherwise specified.

Property of static scoping:

Given the entire program, we can
rename variables to avoid any
shadowing (make all vars unique!)

Dynamic scoping: What is the result?

class World {
int sum;
int value; .
void add() Symbol refers to the variable that
sum = sum + value; was most recently declared within
value = 0; program execution.
void main() {
sum = 0; Views variable declarations as
value = 10;
ad(d(); y executable statements that
if (sum%3==1 . . .
int value: establish which symbol is
valug= 1 considered to be the ‘current one’.
add();

(Used in old LISP interpreters.)

print("inner value = ", value); 0
print("sum =", sum); 11
|}3rint("outer value = ", value); 0 Translation to normal code: access

} through a dynamic environment.

Dynamic scoping translated
using global map, working like stack

class World { class World {
int sum; pushNewDeclaration('sum);
int value; pushNewDeclaration('value);
void add() { void add(int foo) {
sum = sum + value; update('sum, lookup('sum) + lookup('value));
value = 0; update('value, 0);
} }
void main() { void main() {
sum =0; update('sum, 0);
value = 10; update('value,10);
add(); add();
if (sum% 3==1){ if (lookup('sum) % 3 == 1) {
int value; pushNewDeclaration('value);
value = 1; update('value, 1);
add(); add();
print("inner value =", value); 0 print("inner value = ", lookup('value));
print("sum =", sum); 11 print("sum =", lookup('sum));
} popDeclaration('value)
print("outer value = ", value); 0 }
} print("outer value =", lookup('value));
} }
Object-oriented programming has scope for each }

object, so we have a nice controlled alternative to dynamic scoping (objects give names to scopes).

Good Practice for Scoping

* Static scoping is almost universally accepted in
modern programming language design

* |tis the approach that is usually easier to reason
about and easier to compile, since we do not
have names at compile time and compile each
code piece separately

* Still, various ad-hoc language designs emerge
and become successful

— LISP implementations took dynamic scoping since it
was simpler to implement for higher-order functions

— Javascript

How the symbol map
changes in case of
static scoping

Outer declaration
int value is shadowed by
inner declaration string value

Map becomes bigger as

we enter more scopes,

later becomes smaller again
Imperatively: need to make

maps bigger, later smaller again.

Functionally: immutable maps,
keep old versions.

class World {
int sum; int value;
// value — int, sum — int
void add(int foo) {
// foo — int, value — int, sum — int
string z;
// z — string, foo — int, value — int, sum — int
sum = sum + value; value = 0;
}
// value — int, sum — int
void main(string bar) {
// bar — string, value — int, sum — int
inty;
//'y — int, bar — string, value — int, sum — int
sum = 0;
value = 10;
add();
//y = int, bar — string, value — int, sum — int
if (sum % 3==1) {
string value;
// value — string, y — int, bar — string, sum — int
value = 1;
add();
print("inner value =", value);
print("sum =", sum); }
//'y — int, bar — string, value — int, sum — int
print("outer value = ", value);

13

Representing Data 7

ALY

1
In Java, the standard model is a mutable graph of
objects

It seems natural to represent references to symbols
using mutable fields (initially null, resolved during
name analysis)

Alternative way is functional

— store the backbone of the graph as a algebraic data type
(immutable)

— pass around a map linking from identifiers to their
declarations

Note that a field class A { var f:T } is like f: Map[A,T]

Symbol Table (I') Contents

Map identifiers to the symbol with relevant information about the identifier

All information is derived from syntax tree - symbol table is for efficiency
— in old one-pass compilers there was only symbol table, no syntax tree

— in modern compiler: we could always go through entire tree, but symbol table can give faster and easier
access to the part of syntax tree, or some additional information
Goal: efficiently supporting phases of compiler < /=>
In the name analysis phase: ~
— finding which identifier refers to which definition
— we store definitions

What kinds of things can we define? What do we need to know for each ID?
variables (globals, fields, parameters, locals):
— need to know types, positions - for error messages
— later: memory layout. To compile x.f=y into memcopy(addr_y, addr_x+6, 4)

¢ e.g. 3rd field in an object should be stored at offset e.g. +6 from the address
of the object

e the size of data stored in x.f is 4 bytes

— sometimes more information explicit: whether variable local or global
methods, functions, classes: recursively have with their own symbol tables

Functional: Different Points, Different I

class World { T, = { (s, iwt), (count juh]
int sum;
void add(int foo){A/ n=T [fo0:= int]
sum = sum + foo;
b o— T
void sub(int bar) I A [bar:=iwt]
sum = sum - bar;
}

int count;

Imperative Way: Push and Pop

class World { T, = { (s, iwt), (count Wb}
int sum;
void add(int foo) { —Tn=T [fo0:= int]
sum =sum + fOO,‘ change table, record change
}K M, revert changes from table
void sub(intbar){__ = T, [bar:=iwt]
sum = sum - bar; change table, record change
} revert changes from table
int count;

Imperative Symbol Table

Hash table, mutable Map[ID,Symbol]
Example:
— hash function into array
— array has linked list storing (ID,Symbol) pairs
Undo stack: to enable entering and leaving scope
Entering new scope (function,block):
— add beginning-of-scope marker to undo stack
Adding nested declaration (ID,sym)
— lookup old value symOld, push old value to undo stack
— insert (ID,sym) into table
Leaving the scope
— go through undo stack until the marker, restore old values

Functional: Keep Old Version

class World { T, = { (s, iwt), (count Wb}
int sum;
void add(intfoo){ ,_ = 1 [4eo:= ut]
sum =sum + fOO,‘ lcreate new I'y, keep old Iy,
}K r_‘b
void sub(int bar){___ A A [bar:=iwt]
sum = sum - bar; create new I',, keep old T
}
int count;

}

Functional Symbol Table Implemented

e Typical: Immutable Balanced Search Trees

Simplified. In practice, BST[A],

sealed abstract class BST
store Int key and value A

case class Empty() extends BST
case class Node(left: BST, value: Int, right: BST) extends BST

v
v,/ ’ \\l3
e Updating returns new map, keeping old one ./ N/ N\
— lookup and update both log(n)
— update creates new path (copy log(n) nodes, share rest!)

— memory usage acceptable

Lookup

def contains(key: Int, t : BST): Boolean =t match {
case Empty() => false

case Node(left,v,right) => { @
if (key ==v) true
else if (key < v) contains(key, left)
else contains(key, right) @
7
} } e 6 ee J%

Running time bounded by tree height. contains(6,t) ?

Insertion

D add(6t)
c M
def add(x : Int, t : BST) : Node =t match { () A
case Empty() => Node(Empty(),x,Empty()) ARE
case t @ Node(left,v,right) => { D)
i ¥

if (x<v) NodeM, v, right)

else if (x==v) t B c ggl

else Node(left, v, add(x, right)) B
) ~ A\

! @

Both add(x,t) and t remain accessible.

Running time and newtly allocated nodes
bounded by tree height.

Clris Okasaki Puvely Funchouwa) Data

Stuchuves

Balanced Trees: Red-Black Trees

THOMAS H. CORMEN

I CHARLES E. LEISERSON
RONALD L. RIVEST

CLIFFORD STEIN

‘
~

JCTION TO

ALGORITHMS

12

14

Binary Search Trees 286

12.1 What is a binary search tree? 286
122 Querying a binary search tree 289
12.3 Insertion and deletion 294

12.4 Randomly built binary search trees 299
Red-Black Trees 308

13.1 Properties of red-black trees 308

13.2 Rotations 3/2

13.3 Insertion 3/5

13.4 Deletion 323

Augmenting Data Structures 339

14.1 Dynamic order statistics 339

14.2 How to augment a data structure 345

348

14.3 Interval trees

Balanced Tree: Red Black Tree

Goals:

e ensure that tree height remains at most log(size)
<+ add(1,add(2,add(3,...add(n,Empty())...))) ~ linked list >
¢ preserve efficiency of individual operations:
rebalancing arbitrary tree: could cost O(n) work

Solution: maintain mostly balanced trees: height still O(log size)

sealed abstract class Color

case class Red() extends Color 0O

case class Black() extends Color ?O
sealed abstract class Tree

case class Empty() extends Tree

case class Node(c: Color,left: Tree,value: Int, right: Tree)
extends Tree

Properties of red-black trees

A red-black tree is a binary search tree with one extra bit of storage per node: its
color, which can be either RED or BLACK. By constraining the node colors on any
simple path from the root to a leaf, red-black trees ensure that no such path is more
than twice as long as any other, so that the tree is approximately balanced.

Each node of the tree now contains the attributes color, key, left, right, and p. If
a child or the parent of a node does not exist, the corresponding pointer attribute
of the node contains the value NIL. We shall regard these NILs as being pointers to
leaves (external nodes) of the binary search tree and the normal, key-bearing nodes
as being internal nodes of the tree.

A red-black tree is a biary tree that satisfies the following red-black properties:

1. Every node is either red or black.

balanced 2. Theroot is black.
tree 3. Every leaf (NIL) is black.
Const ra | ntS 4. If a node is red, then both its children are black.
5. Foreach node, all simple paths from the node to descendant leaves contain the

same number of black nodes.
From 4. and 5.: tree height is O(log size).
Analysis is similar for mutable and immutable trees.
for immutable trees: see book by Chris Okasaki

Balancing

def balance(c: Color, a: Tree, x: Int, b: Tree): Tree = (c,a,x,b) match {
case (Black(),Node(Red(),Node(Red(),a,xV,b),yV,c),zV,d) =>
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))

. dg

a‘bc a b c

d

case (Black(),Node(Red(),a,xV,Node(Red(),b,yV,c)),zV,d) =>
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
case (Black(),a,xV,Node(Red(),Node(Red(),b,yV,c),zV,d)) =>
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
case (Black(),a,xV,Node(Red(),b,yV,Node(Red(),c,zV,d))) =>
Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
case (c,a,xV,b) => Node(c,a,xV,b)

Insertion

def add(x: Int, t: Tree): Tree = {
def ins(t: Tree): Tree =t match {
case Empty() => Node(Red(),Empty(),x,Empty())
case Node(c,a,y,b) =>
if (x<y) balance(c, ins(a), y, b)
else if (x ==y) Node(c,a,y,b)
else balance(c,a,y,ins(b))
}
makeBlack(ins(t))
}
def makeBlack(n: Tree): Tree = n match {
case Node(Red(),l,v,r) => Node(Black(),l,v,r)
case _=>n

} Modern object-oriented languages (e.g. Scala)
support abstraction and functional data structures.
Just use Map from Scala.

Exercise

Determine the output of the following program assuming static
and dynamic scoping. Explain the difference, if there is any.
object MyClass {
valx=5
def foo(z: Int): Int={x+ 2z}
def bar(y: Int): Int = {
valx=1;valz=2
foo(y)
}
def main() {
valx=7
printin(foo(bar(3)))
}
}

i=0

while (i < 10) { source code
i=d+13}

id3 ~

Compiler

assign -
/

characters words trees
(tokens)

Type Checking

Evaluating an Expression

scala prompt:

>def minl(x:Int,y:Int):Int={if (x<y) xelsey+1}

minl: (x: Int,y: Int)Int

>min1(10,5)

resl:Int=6
How can we think about this evaluation?

x=> 10

y=>5

if (x <y) x else y+1 l“F 2

A

/(\,Fo\lse X /4’\
0> Vs Y 1

Computing types using the evaluation
tree

scala prompt:
>def minl(x: Int, y: Int) : Int = {if (x <y) x else y+1 }
minl: (x: Int,y: Int)Int
>min1(10,5)
resl:Int=6

How can we think about this evaluation?

x:Int> 10
y:Int>5 Int
if (x <y) x else y+1 l“F 2

< Bao\ea\x\ lét
. false X +
||r\":.>< \ Int {nt \ Int

We can compute types without values

scala prompt:
>def minl(x:Int,y: Int):Int={if (x<y)xelse y+1}
minl: (x: Int,y: Int)Int

>min1(10,5)
resl:Int=6
How can we think about this evaluation?
x:Int mus‘t ‘{;yPe c‘/\eclc
y:Int Int both brauches

if (x <y) x else y+1 l“F”

{ bdm\x\ Int

Int
X +

We do not like trees upside-down

Leaves are Up

type rules move
from leaves to root

Type Judgements and Type Rules

e e type checks to T under I (type environment)
ke : T
— Types of constants are predefined
— Types of variables are specified in the source code

e |f e is composed of sub-expressions

Q‘ Foeq: TD-o-@l—en:TID

-[;\fre checl Tke:T

£rom \eaves

Type Judgements and Type Rules

'e : T

if the (free) variables of e have types given by the
type environment gamma, then e (correctly)
type checks and has type T

ke Ty - They: Ty

type rule
'Fe:T

If e, type checks in gamma and has type T, and ...
and e, type checks in gamma and has type T,
then e type checks in gamma and has type T

[k

Type Rules as Local Tree Constraints

X :Int
y:Int

lwtf

N

L Booi@a “

Boo\eah @@
‘-f-

[

—p

X o b L
Int N Int y\ /
Bodeav- //
Type Rules
e;:Int e, :Int
e; < e, : Boolean

for every type T, if

b has type Boolean, and ...

then

b:Boolean e;:T

eZ:T

if(b) e; elsee,: T

Type Rules with Environment

Xt 1
'"*‘\ " MZ\ /it

My w3 Boo\eau\ /""t/

envurm\wen‘c

M mt
Type Rules
(x:T)€e
Ok x:T lut Const (L) Int
Tkeplnt Mee,tint withew) in the Sawe) euvironmeut T

the ion €,<€, has tupe Bool.
n F(61<ez\13mleav\ expression €, <€, has tpe

]’“\-el-_ lwt MNE e, \wt F\-beoolea.u MFe T r')—ez:T
MNE (e et Creif) egelsee,) T

Type Checker Implementation Sketch
TV/OQT}”Q@
def typeCheck(I" : Map[ID, Type], e : ExprTree) : TypeTree = {
e match {
case Var(id) => { ?#}
case If(c,el,e2) => {??}

.

case Var(id) => {I'(id) match
case Some(t) =>t
case None => error(Unknownldentifier(id,id.pos))

}

Type Checker Implementation Sketch

val tc = typeCheck(T',c)

if (tc I= BooIeanTyBe) error(IfExpectsBooleanCondition(e.pos))
val t1 = typeCheck(I’, e1); val t2 = typeCheck(T, e2)

if (t1 !=t2) error(IfBranchesShouldHaveSameType(e.pos))

tl

}

Derivation Using Type Rules

x:Int |V\'€< Int\/ 7 1'
y . Int \ In‘t\ /ln‘l’,
ln't
oo\ea.h\ //
ln‘h
Lt M= {Guteb), Gy b (ylabrer
Cowel el Popld mtihet
P Fxilut NEytlut
ME(g+H) It

M (%£Y): Boolean

M F(if(xey % @se yi) o lnt
-

Type Rule for Function Application

The T, They:Ty, TFE(TXXT,)—>T

I'-f(eq, -, en):T

N4

N

Type Rule for Function Application
[Cont.]

We can treat operators as variables that have function type

4+ . lutxlut - Int
< i mtx lut = Boolean
32 ! Bodlean X Boclean — Boelean

We can replace many previous rules with application rule:

r‘l—eit.‘_l » r‘" e.". TV\ PI_ ‘F.-((‘FLX“‘XTH)—; -r)

Mk f(er,.,ew:T

' -e;:Bool T +ey:Bool T F &&:(BoolxBool) = Bool

'+ e; && e,:Bool

Computing the Environment of a Class

biect World be i Lt)\xfr
object Worl
v::\r data: Int{ (data,int), \Y Beclean
var name : String (vame, String), \ﬁ>
defm(x: Int,y:Int): Boolean{... } (m, (nt xlut — Boolean) |
defn(x:Int):Int{ (n, lut = lut),
if (x>0) p(x—1) else 3
}
defp(r:Int):Int={ (p) lut = lwt)
vark=r+2
m(k, n(k))
} Y

}

We can type check each function m,n,p in this global environment

Extending the Environment

R
class World {
var data : Int (data,int),
var name : String (vame, String),
defm(x: Int,y:Int): Boolean{... } (m, (nt xlut — Boolean) |
defn(x:Int):Int{ (n, lut = lut),
if(x>0) p(x—1)else 3 (p, lnt =>lak) §
} <« r‘o
defp(r:iInt):Int={ —p -0 ef (w,luk)’]
var kilnt <-———|":= el (k,nBY = r'ouicr,luk_(k,lut)}
k=r+2 t
m(k, n(k))
}

}

Type Rule for Method Definitions = def m(x;: T,
r' Q{UHT'\!"'(’(M.T“\} \' e: T

o X T T=e

Mk (def mO4 T, Xt TW) 1 T=e) 1ok
r -
Type Rule for Assignments
wxmelt MEeiT
(R (x:e,\',vo:la

Unit
Type Rules for Block: { var x4:T ... var x,:T,; S4;

..Sm e}

TS void
Q\" X} (,TY), ... s ()(..‘Th\ } >
T

pf'\;'sh:void
_/\/M n I" e T

M Lottt T S S 2 T

Blocks with Declarations in the Middle

MFeT just
MEgey T expression M §}:void

empty

Po{T] | §ty- b T

M {var x:T, RTY “'li'L\AH ‘T

declaration is first

P ‘r Sl"\lol.& \""{{1| "'.’kh’i ‘ T
Pe{Sst ., tadT

statement is first

Rule for While Statement

MF b:Boolean ' s:vold

[k (while (b) s) © void

Rule for a Method Call

class To {
A‘é; V“("\"Tl,..,’*m.' Th\ W T -‘€
3...
3
. T 5T V‘Lé{l,’l,...,h}
F wm: |oXTl)(Xt R o
r\‘_ X"To r"ro r‘"ec'-l—«.

M xwm(e,. . e . T

wA (X| Q.,.,.,e\,‘\

