
Computing ’nullable’ for regular expressions

If e is regular expression (its syntax tree), then L(e) is the language denoted by it.
For L⊆A∗ we defined nullable(L) as ϵ ∈ L
If e is a regular expression, we can compute nullable(e) to be equal to nullable(L(e)),
as follows:

nullable(�) = false
nullable(ϵ) = true
nullable(a) = false

nullable(e1|e2) = nullable(e1)∨nullable(e2)

nullable(e∗) = true
nullable(e1e2) = nullable(e1)∧nullable(e2)

Computing ’first’ for regular expressions

For L⊆A∗ we defined: first(L)= {a ∈A | ∃v ∈A∗. av ∈ L}.
If e is a regular expression, we can compute first(e) to be equal to first(L(e)), as
follows:

first(�) = �
first(ϵ) = �
first(a) = {a}, for a ∈A

first(e1|e2) = first(e1)∪first(e2)

first(e∗) = first(e)
first(e1e2) = if (nullable(e1)) then first(e1)∪first(e2)

else first(e1)

Clarification for first of concatenation

Let e be a∗b. Then L(e)= {b,ab,aab,aaab, . . .}
first(L(e))= {a,b}

e = e1e2 where e1 = a∗ and e2 = b. Thus, nullable(e1).

first(e1e2)= first(e1)∪first(e2)= {a}∪ {b}= {a,b}
It is not correct to use first(e)=? first(e1)= {a}.
Nor is it correct to use first(e)=? first(e2)= {b}.
We must use their union.

Converting Simple Regular Expresssions into a Lexer

regular expression lexercode
a (a ∈A) if (current = a) next else ...
r1r2 code(r1); code(r2)
r1|r2 if (current ∈ first(r1))

code(r1)
else code(r2)

r ∗ while (current ∈ first(r))
code(r)

More complex cases

In other cases, a few upcoming characters (“lookahead”) are not sufficient to
determine which token is coming up.

Examples:
A language might have separate numeric literal tokens to simplify type checking:
▶ integer constants: digit digit∗
▶ floating point constants: digit digit∗ . digit digit∗

Floating point constants must contain a period (e.g., Modula-2).

Division sign begins with same character as // comments.
Equality can begin several different tokens.

In such cases, we process characters and store them until we have enough information
to make the decision on the current token.

Example of a part of a lexical analyzer

ch.current match {
case '(' => {current = OPAREN; ch.next; return}
case ')' => {current = CPAREN; ch.next; return}
case '+' => {current = PLUS; ch.next; return}
case '/' => {current = DIV; ch.next; return}
case '*' => {current = MUL; ch.next; return}
case '=' => { // more tricky because there can be =, ==
ch.next
if (ch.current == '=') {ch.next; current = CompareEQ; return}
else {current = AssignEQ; return}

}
case '<' => { // more tricky because there can be <, <=
ch.next
if (ch.current == '=') {ch.next; current = LEQ; return}
else {current = LESS; return}

}
}

Example of a part of a lexical analyzer

ch.current match {
case '(' => {current = OPAREN; ch.next; return}
case ')' => {current = CPAREN; ch.next; return}
case '+' => {current = PLUS; ch.next; return}
case '/' => {current = DIV; ch.next; return}
case '*' => {current = MUL; ch.next; return}
case '=' => { // more tricky because there can be =, ==
ch.next
if (ch.current == '=') {ch.next; current = CompareEQ; return}
else {current = AssignEQ; return}

}
case '<' => { // more tricky because there can be <, <=
ch.next
if (ch.current == '=') {ch.next; current = LEQ; return}
else {current = LESS; return}

}
}

What if we omit ch.next?

Example of a part of a lexical analyzer

ch.current match {
case '(' => {current = OPAREN; ch.next; return}
case ')' => {current = CPAREN; ch.next; return}
case '+' => {current = PLUS; ch.next; return}
case '/' => {current = DIV; ch.next; return}
case '*' => {current = MUL; ch.next; return}
case '=' => { // more tricky because there can be =, ==
ch.next
if (ch.current == '=') {ch.next; current = CompareEQ; return}
else {current = AssignEQ; return}

}
case '<' => { // more tricky because there can be <, <=
ch.next
if (ch.current == '=') {ch.next; current = LEQ; return}
else {current = LESS; return}

}
}

What if we omit ch.next?
Lexer could generate a non-existing equality token!

White spaces and comments

Whitespace can be defined as a token, using space character, tabs, and various end of
line characters. Similarly for comments.

In most languages (Java, ML, C) white spaces and comments can occur between any
two other tokens have no meaning, so parser does not want to see them.

Convention: the lexical analyzer removes those “tokens” from its output. Instead, it
always finds the next non-whitespace non-comment token.

Other conventions and interpretations of new line became popular to make code more
concise (sensitivity to end of line or indentation). Not our problem in this course!
Tools that do formatting of source also must remember comments. We ignore those.

Skipping simple comments

if (ch.current='/') {
ch.next
if (ch.current='/') {

while (!isEOL && !isEOF) {
ch.next

}
} else {

Skipping simple comments

if (ch.current='/') {
ch.next
if (ch.current='/') {

while (!isEOL && !isEOF) {
ch.next

}
} else {

ch.current =DIV
}

}

Skipping simple comments

if (ch.current='/') {
ch.next
if (ch.current='/') {

while (!isEOL && !isEOF) {
ch.next

}
} else {

ch.current =DIV
}

}
Nested comments: this is a single comment:
/* foo /* bar */ baz */
Solution:

Skipping simple comments

if (ch.current='/') {
ch.next
if (ch.current='/') {

while (!isEOL && !isEOF) {
ch.next

}
} else {

ch.current =DIV
}

}
Nested comments: this is a single comment:
/* foo /* bar */ baz */
Solution: use a counter for nesting depth

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Some solutions:

ID(interpreters) LE ID(compilers) - OK, longest match rule
ID(inter) ID(preters) LE ID(compilers)

ID(interpreters) LT EQ ID(compilers)

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Some solutions:

ID(interpreters) LE ID(compilers) - OK, longest match rule
ID(inter) ID(preters) LE ID(compilers)

- not longest match: ID(inter)
ID(interpreters) LT EQ ID(compilers)

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Some solutions:

ID(interpreters) LE ID(compilers) - OK, longest match rule
ID(inter) ID(preters) LE ID(compilers)

- not longest match: ID(inter)
ID(interpreters) LT EQ ID(compilers)

- not longest match: LT

Longest match rule is greedy, but that’s OK

Consider language with ONLY these three operators:
LT: <
LE: <=
IMP: =>

For sequence:
<=>

lexer will first return LE as token, then report unknown token >.
This is the behavior that we expect.

This is despite the fact that one could in principle split the input into < and =>, which
correspond to sequence LT IMP. But a split into < and => would not satisfy longest
match rule, so we do not want it. Reporting error is the right thing to do here.

This behavior is not a restriction in practice: programmers we can insert extra spaces
to stop maximal munch from taking too many characters.

Token priority
What if our token classes intersect?
Longest match rule does not help, because the same string belongs to two regular
expressions
Examples:
▶ a keyword is also an identifier
▶ a constant that can be integer or floating point

Solution is priority: order all tokens and in case of overlap take one earlier in the list
(higher priority).
Examples:
▶ if it matches regular expression for both a keyword and an identifier, then we

define that it is a keyword.
▶ if it matches both integer constant and floating point constant regular expression,

then we define it to be (for example) integer constant.
Token priorities for overlapping tokens must be specified in language definition.

Automating Construction of Lexers

by converting

Regular Expressions to Automata

Regular Expression to Programs

• How can we write a lexer that has these two classes

of tokens:

– a*b

– aaa

• Consider run of lexer on: aaaab and on: aaaaaa

Regular Expression to Programs

• How can we write a lexer that has these two classes

of tokens:

– a*b

– aaa

• Consider run of lexer on: aaaab and on: aaaaaa

• A general approach:

Regular

Expression
Finite Automaton Program

Finite Automaton (Finite State Machine)

A = (Σ, Q, q0, δ, F)

• Σ - alphabet

• Q - states (nodes in the graph)

• q0 - initial state (with ‘->' sign in drawing)

• δ - transitions (labeled edges in the graph)

• F - final states (double circles)

Numbers with Decimal Point

digit digit* . digit digit*

What if the decimal part is optional?

•DFA:  is a function :

•NFA:  could be a relation

•In NFA there is no unique next state. We have a set of

possible next states.

Kinds of Finite State Automata

Remark: Relations and Functions

• Relation r B x C⊆

r = { ..., (b,c1) , (b,c2) ,... }

• Corresponding function: f : B -> 2C

f = { ... (b,{c1,c2}) ... }

 f(b) = { c | (b,c) r }∈

• Given a state, next-state function returns a set of

new states

for deterministic automaton, set has exactly 1 element

Allowing Undefined Transitions

• Undefined transitions are equivalent to transition

into a sink state (from which one cannot recover)

Allowing Epsilon Transitions

• Epsilon transitions:
–traversing them does not consume anything

• Transitions labeled by a word:

–traversing them consumes the entire word

When Automaton Accepts a Word

Automaton accepts a word w iff there exists a path in the

automaton from the starting state to some accepting state

such that concatenation of words on the path gives w.

• Does the automaton accept the word a ?

Exercise

• Construct a NFA that recognizes all strings over {a,b} that contain

"aba" as a substring

Running NFA (without epsilons)
def δ(a : Char)(q : State) : Set[States] = { ... }

def δ'(a : Char, S : Set[States]) : Set[States] = {

 for (q1 <- S, q2 <- δ(a)(q1)) yield q2 // S.flatMap(δ(a))

}

def accepts(input : MyStream[Char]) : Boolean = {

 var S : Set[State] = Set(q0) // current set of states

 while (!input.EOF) {

 val a = input.current

 S = δ'(a,S) // next set of states

 }

 !(S.intersect(finalStates).isEmpty)

}

NFA Vs DFA

• Every DFA is also a NFA (they are a special case)

• For every NFA there exists an equivalent DFA that accepts

the same set of strings

• But, NFAs could be exponentially smaller (succinct)

• There are NFAs such that every DFA equivalent to it has

exponentially more number of states

Regular Expressions and Automata

Theorem:

Let L be a language. There exists a regular expression

that describes it if and only if there exists a finite

automaton that accepts it.

Algorithms:

• regular expression → automaton (important!)

• automaton → regular expression (cool)

A1:

Recursive Constructions

Union:

Concatenation:

A2:

Recursive Constructions

Star:

Exercise: (aa)* | (aaa)*

• Construct an NFA for the regular expression

NFAs to DFAs (Determinization)

• keep track of a set of all possible states in which the

automaton could be

• view this finite set as one state of new automaton

NFA to DFA Conversion

NFA to DFA Conversion

NFA to DFA Conversion

•DFA:

NFA to DFA Conversion through Examle

Clarifications

Minimizing DFAs: Procedure
• Write down all pairs of state as a table
• Every cell in the table denotes whether the

corresponding states are equivalent
q1 q2 q3 q4 q5

q1 x ? ? ? ?

q2 x ? ? ?

q3 x ? ?

q4 x ?

q5 x

Minimizing DFAs: Procedure
• Inititalize cells (q1, q2) to false if one of them is final

and other is non-final

• Make the cell (q1, q2) false, if q1 → q1’ on some

alphabet symbol and q2 → q2’ on ‘a’ and q1’ and q2’

are not equivalent

• Iterate the above process until all non-equivalent

states are found

Minimizing DFAs: Illustration

0 1 2 3 4 5 6

0 x

1 x

2 x

3 x

4 x

5 x

6 x

Properties of Automata

Emptiness of language, inclusion of one language into another,
equivalence – they are all decidable

