
Language
Definition
A language over alphabet A is a set L⊆A∗. Example:

▶ a finite language like L= {1,10,1001} or the empty language ;
▶ infinite but very difficult to describe (there are random languages: there exist

more languages as subsets of A∗ than there are finite descriptions)
▶ infinite but having some nice structure, where words follow a certain “pattern”

that we can describe precisely and check efficiently ← these are our focus
L2 = {01,0101,010101, . . .} = those non-empty words that are of the form 01 . . .01
where the block 01 is repeated some finite positive number of times. Using notation
(01)n for a word consisting of block 01 repeated n times, we can write
L2 = {(01)n | n≥ 1}.
Languages are sets, so we can take their union (∪), intersection (∩), and apply other
set operations on languages.
Languages ; and {ϵ} are very different: ; is a set that contains no words, whereas {ϵ}
contains precisely one word, the word of length zero.

Concatenating Languages
In addition to operations such as intersection and union that apply to sets in general,
languages support additional operations, which we can define because their elements
are words. The first one translates concatenation of words to sets of words, as follows.
Definition (Language concatenation)
Given L1 ⊆A∗ and L2 ⊆A∗, define L1 ·L2 = {w1w2 |w1 ∈ L1,w2 ∈ L2}
The definition above states that w ∈ L1L2 if and only if there is a way to split w into
two words w1 and w2, so that w =w1w2 and such that w1 ∈ L1 and w2 ∈ L2.
Definition (Language exponentiation)
Given L⊆A∗, define

L0 = {ϵ}
Ln+1 = L ·Ln

Theorem
Given L⊆A∗, Ln = {w1 . . .wn |w1, . . . ,wn ∈ L}

Expanding the Definition

If L is an arbitrary language, compute each of the following:
▶ L;
▶ ;L
▶ L{ϵ}
▶ {ϵ}L
▶ ;{ϵ}
▶ LL
▶ {ϵ}n

Note the difference between:
▶ the empty language ;, which contains no words
▶ the language {ϵ}, which contains exactly one word, ϵ

Expanding the Definition

If L is an arbitrary language, compute each of the following:
▶ L;
▶ ;L
▶ L{ϵ}
▶ {ϵ}L
▶ ;{ϵ}
▶ LL
▶ {ϵ}n

Note the difference between:
▶ the empty language ;, which contains no words
▶ the language {ϵ}, which contains exactly one word, ϵ

Concatenation of Languages

Let A be alphabet. Consider the set of all languages L⊆A∗

Is this a monoid?

Does the cancelation law hold?

Concatenation of Languages

Let A be alphabet. Consider the set of all languages L⊆A∗

Is this a monoid?

Does the cancelation law hold?

Representing Languages in Programs

In general not possible: formal languages need not be recursively enumerable sets.
A reasonably powerful representation: computable characteristic function.
As for any subset of some fixed set, a language L⊆A∗ is given by its characteristic
function fA :A∗→{0,1} defined by fA(w)= 1 for w ∈ L and fA(w)= 0 for w /∈ L.
Here we use the contains field as the characteristic function and build the language
L2 = {(01)n |≥ 0}.
case class Lang[A](contains: List[A] -> Boolean)
def f(w: List[Int]): Boolean = w match {
case Cons(0, Cons(1, Nil())) => true
case Cons(0, Cons(1, wRest)) => f(wRest)
case _ => false

}
val L2 = Language(f)
val test = L2.contains(0 ::1 ::0 ::1 ::Nil())

Representing Language Concatenation

W can use code to express concatenation of computable languages.
def concat(L1: Lang[A], L2: Lang[A]): Lang[A]= {
def checkFrom(i: BigInt, len: BigInt) = {
require(0 <= i && i <= len)
(L1.contains(w.slice(0, i)) && L2.contains(w.slice(i, len)) ||
(i < len && checkFrom(i + 1, len))

}
def f(w: List[A]) = checkFrom(0, w.length)
Lang(f) // return the language whose characteristic function is f

}

Repetition of a Language: Kleene Star

Definition (Kleene star)
Given L⊆A∗, define

L∗=
∪
n≥0

Ln

Theorem
For L⊆A∗, for every w ∈A∗ we have w ∈ L∗ if and only if

∃n≥ 0.∃w1, . . . ,wn ∈ L. w =w1 . . .wn

{a}∗= {ϵ,a,aa,aaa, . . .}
{a,bb}∗= {ϵ,a,bb,abb,bba,aa,bbbb,aabb, . . .} (describe this language)
Can L∗ be finite for some L?

Star and the Empty Word

Because concatenating with an empty word has no effect, we have the following:

L∗= {ϵ}∪ (L \ {ϵ})∗

Equivalently: w ∈ L∗ if and only if either w = ϵ or, for some n where 1≤ n≤ |w |,

w =w1 . . .wn

where wi ∈ L and |wi | ≥ 1 for all i where 1≤ i ≤ n.

If L is computable (has a computable characterstic function), is L∗ also computable?
▶ try all possible ways of splitting w (but there are better ways)

Star and the Empty Word

Because concatenating with an empty word has no effect, we have the following:

L∗= {ϵ}∪ (L \ {ϵ})∗

Equivalently: w ∈ L∗ if and only if either w = ϵ or, for some n where 1≤ n≤ |w |,

w =w1 . . .wn

where wi ∈ L and |wi | ≥ 1 for all i where 1≤ i ≤ n.

If L is computable (has a computable characterstic function), is L∗ also computable?

▶ try all possible ways of splitting w (but there are better ways)

Star and the Empty Word

Because concatenating with an empty word has no effect, we have the following:

L∗= {ϵ}∪ (L \ {ϵ})∗

Equivalently: w ∈ L∗ if and only if either w = ϵ or, for some n where 1≤ n≤ |w |,

w =w1 . . .wn

where wi ∈ L and |wi | ≥ 1 for all i where 1≤ i ≤ n.

If L is computable (has a computable characterstic function), is L∗ also computable?
▶ try all possible ways of splitting w (but there are better ways)

Starring: {a,ab}

Let A= {a,b} and L= {a,ab}.
Come up with a property “. . .” that describes the language L∗:

L∗= {w ∈A∗ | . . .}

Prove that the property and L∗ denote the same language.

Further Examples

Let A = {a,b}
Let L = {a,ab}
L L = { aa, aab, aba, abab }

compute LLL
L* = {ε, a, ab, aa, aab, aba, abab, aaa, ... }
Is bb inside L* ?

Further Examples

Let A = {a,b}
Let L = {a,ab}
L L = { aa, aab, aba, abab }

compute LLL
L* = {ε, a, ab, aa, aab, aba, abab, aaa, ... }
Is bb inside L* ?

Question: Is it the case that
L*={ w | immediately left of each b is an a }

If yes, prove it. If no, give a counterexample.

Precise Statement and Proof
Reminder: L* = { w1 … wn | n ≥ 0, w1 … wn ∈ L }

Claim: {a,ab}*= S where
 S = {w ∈ {a,b}*|∀0≤i<|w|. if w(i) =b then: i > 0 and w(i-1)=a}
Proof. We show 1) {a,ab}*⊆S and 2) S⊆{a,ab}*.
1) {a,ab}* ⊆ S: We show: for all n, {a,ab}n ⊆ S, by induction on n
- Base case, n=0. {a,ab}0={ε}, so i<|w| is always false and '->' is true.
- Suppose {a,ab}n ⊆ S. Showing {a,ab}n+1 ⊆ S. Let w∈{a,ab}n+1 .
Then w = vw’ where w’∈{a,ab}n, v∈{a,ab}. Let i < |w| and w(i)=b.
v(0)=a, so w(0) =a and thus w(0) !=b. Therefore i > 0. Two cases:
1.1) v=a. Then w(i)=w'(i-1) . By I.H. i-1>0 and w'(i-2)=a. Thus w(i-1)=a.
1.2) v=ab. If i=1, then w(i-1)=w(0)=a, as needed. Else, i>1 so
 w'(i-2)=b and by I.H. w'(i-3)=a. Thus w(i-1) =(vw')(i-1) = w'(i-3) =a.

Proof Continued
recall: S = {w ∈ {a,b}*|∀0≤i<|w|. if w(i) =b then: i > 0 and w(i-1)=a}
For the second direction, we first prove:

(*) If w∈S and w=w'v then w'∈S.
Proof of (*): Let i<|w'|, w'(i)=b. Then w(i)=b so w(i-1)=a and thus w'(i-1)=a.
2) S ⊆{a,ab}*. We prove, by induction on n, that for all n,

for all w, if w∈S and n=|w| then w∈{a,ab}*.
- Base case: n=0. Then w is empty string and thus in {a,ab}*.
- Let n>0. Suppose property holds for all k < n. Let w∈S, |w|=n.
There are two cases, depending on the last letter of w.
2.1) w=w'a. Then w'∈S by (*), so by IH w'∈{a,ab}*, so w∈{a,ab}*.
2.2) w=vb. By w∈S , w(|w|-2)=a, so w=w'ab. By (*), w'∈S, by IH w'∈
{a,ab}*, so w∈{a,ab}*. In any case, w∈{a,ab}*. We proved the
entire equality.

Regular Expressions

Regular Expressions
One way to denote (often infinite) languages
Regular expression = expression built only from:

– empty language ∅ (empty set of words)
– {ε}, denoted just ε (set containing the empty word)
– {a} for a ∈ A, denoted simply by a
– union of sets of words, denoted | (some use +)
– concatenation of sets of words (dot, or not written)
– Kleene star * (repetition)

• Example: letter (letter | digit)*
(letter,digit are shorthand sets from before)

Kleene (from Wikipedia)

Stephen Cole Kleene (January 5, 1909, Hartford, Connecticut, United
States – January 25, 1994, Madison, Wisconsin) was an American
mathematician who helped lay the foundations for theoretical
computer science. One of many distinguished students of Alonzo
Church, Kleene, along with Alan Turing, Emil Post, and others, is best
known as a founder of the branch of mathematical logic known as
recursion theory. Kleene's work grounds the study of which functions
are computable. A number of mathematical concepts are named after
him: Kleene hierarchy, Kleene algebra, the Kleene star (Kleene
closure), Kleene's recursion theorem and the Kleene fixpoint theorem.
He also invented regular expressions, and was a leading American
advocate of mathematical intuitionism.

Regular Expressions
• Regular expressions are just a notation for some

particular operations on languages
letter (letter | digit)*

• Denotes the set
letter (letter ∪ digit)*

• Each finite language {w1, …, wn} can be described using
regular expression (w1 | …| wn)
but we can also describe many infinite languages.

• [a..z] = a|b|...|z (use ASCII ordering)
(also other shorthands for finite languages)

• e? (optional expression)
• e+ (repeat at least once)
• ek..*

 = ek e* ep..q = ep (ε|e)q-p

• complement: !e (A* \ e) -non-obvious, use automata
• intersection: e1 & e2 (e1 ∩ e2) = ! (!e1| !e2)

Some Regular Expression Operators that
can be Defined in Terms of Previous Ones

Monadic Second-Order Logic

(Advanced)
• Quantification: we can also allow expressions with ∀ and

“Monadic Second-Order Logic of Strings”
For example, the statement:

{a,ab}*= {w ∈ {a,b}*|∀i. w(i)=b → i > 0 & w(i-1)=a}

can be proven automatically using tools such as:
http://www.brics.dk/mona/

Lexical Analysis

Lexical Analysis
res = 14 + arg * 3 (character stream)

Lexer gives:

“res”, “=”, “14”, “+”, “arg”, “*”, “3” (token strem)

Lexical analyzer (lexer, scanner, tokenizer) is often
specified using regular expressions for each kind of token
It groups characters into tokens, maps stream to stream
● A simple lexer could represent all tokens as strings
● For efficiency and convenience we represent tokens

using more structured data types

Lexical Analyzer - Key Ideas
Typically needs only small amount of memory.
It is not difficult to construct a lexical analyzer manually

For such lexers, we use the first character to decide on token
class: first(L) = { a | aw in L }

We use longest match rule: lexical analyzer should eagerly accept the
longest token that it can recognize from this point, even if this means
that later characters will not form valid token.

It is possible to automate the construction of lexical analyzers, using a
conversion of regular expressions to automata.
Tools that automate this construction are part of compiler-compilers,
such as JavaCC described in the “Tiger book”.

While Language – A Program

num = 13;
while (num > 1) {
 println("num = ", num);
 if (num % 2 == 0) {
 num = num / 2;
 } else {
 num = 3 * num + 1;
 }
}

Tokens (Words) of the While Language
Ident ::=

letter (letter | digit)*

integerConst ::= digit digit*

keywords
if else while println

special symbols
() && < == + - * / % ! - { } ; ,

letter ::= a | b | c | … | z | A | B | C | … | Z
digit ::= 0 | 1 | … | 8 | 9

regular
expressions

Manually Constructing Lexers
by example

i
d
3
=
0
LF

w

id3
=
0

while
(

id3
<

10
)

lexer

Stream of Char-s:
class CharStream(fileName : String){
 val file = new BufferedReader(
 new FileReader(fileName))
 var current : Char = ' '
 var eof : Boolean = false
 def next = {
 if (eof)
 throw EndOfInput("reading" + file)
 val c = file.read()
 eof = (c == -1)
 current = c.asInstanceOf[Char]
 }
 next // init first char
}

Stream of Token-s
sealed abstract class Token
case class ID(content : String) // “id3”

extends Token
case class IntConst(value : Int) // 10

extends Token
case object AssignEQ extends Token
case object CompareEQ

extends Token
case object MUL extends Token // *
case object PLUS extends Token //+
case object LEQ extends Token //‘<=‘
case object OPAREN extends Token
case class CPAREN extends Token
case object IF extends Token
case object WHILE extends Token
case object EOF extends Token

// End Of File

class Lexer(ch : CharStream) {
 var current : Token
 def next : Unit = {
 lexer code goes here
 }
}

Recognizing Identifiers and Keywords
if (isLetter) {
 b = new StringBuffer
 while (isLetter || isDigit) {
 b.append(ch.current)
 ch.next
 }
 keywords.lookup(b.toString) {
 case None=> token=ID(b.toString)
 case Some(kw) => token=kw
 }

}

Keywords look like identifiers, but
are simply indicated as keywords in
language definition. Introduce a
constant Map from strings to
keyword tokens. If not in map, then
it is ordinary identifier.

regular expression for identifiers:
letter (letter|digit)*

Integer Constants and Their Value

if (isDigit) {
 k = 0
 while (isDigit) {
 k = 10*k + toDigit(ch.current)
 ch.next
 }
 token = IntConst(k)
}

regular expression for integers:
digit digit*

Deciding which Token is Coming

• How do we know when we are supposed to analyze string,
when integer sequence etc?

• Manual construction: use lookahead (next symbol in stream) to
decide on token class

• compute first(e) - symbols with which e can start
• check in which first(e) current token is
• If L ⊆ A* is a language, then first(L) is set of all alphabet

symbols that start some word in L
first(L) = {a∈A|∃v∈A* . a v ∈ L}

First Symbols of a Set of Words

first({a, bb, ab}) = {a,b}
first({a, ab}) = {a}
first({aaaaaaa}) = {a}
first({a}) = {a}
first({}) = {}
first({ε}) = {}
first({ε,ba}) = {b}

first of a regexp
• Given regular expression e, how to compute first(e)?

– use automata (we will see this later)
– rules that directly compute them (also work for

grammars, we will see them for parsing) - now
• Examples of first(e) computation:

– first(ab*) = {a}
– first(ab*|c) = {a,c}
– first(a*b*c) = {a,b,c}
– first((cb|a*c*)d*e)) =

• Notion of nullable(r) - whether empty string belongs to the
regular language.

Computing ’nullable’ for regular expressions

If e is regular expression (its syntax tree), then L(e) is the language denoted by it.
For L⊆A∗ we defined nullable(L) as ϵ ∈ L
If e is a regular expression, we can compute nullable(e) to be equal to nullable(L(e)),
as follows:

nullable(;) = false
nullable(ϵ) = true
nullable(a) = false

nullable(e1|e2) = nullable(e1)∨nullable(e2)

nullable(e∗) = true
nullable(e1e2) = nullable(e1)∧nullable(e2)

Computing ’first’ for regular expressions

For L⊆A∗ we defined: first(L)= {a ∈A | ∃v ∈A∗. av ∈ L}.
If e is a regular expression, we can compute first(e) to be equal to first(L(e)), as
follows:

first(;) = ;
first(ϵ) = ;
first(a) = {a}, for a ∈A

first(e1|e2) = first(e1)∪first(e2)

first(e∗) = first(e)
first(e1e2) = if (nullable(e1)) then first(e1)∪first(e2)

else first(e1)

Clarification for first of concatenation

Let e be a∗b. Then L(e)= {b,ab,aab,aaab, . . .}
first(L(e))= {a,b}

e = e1e2 where e1 = a∗ and e2 = b. Thus, nullable(e1).

first(e1e2)= first(e1)∪first(e2)= {a}∪ {b}= {a,b}
It is not correct to use first(e)=? first(e1)= {a}.
Nor is it correct to use first(e)=? first(e2)= {b}.
We must use their union.

Converting Simple Regular Expresssions into a Lexer

regular expression lexercode
a (a ∈A) if (current = a) next else ...
r1r2 code(r1); code(r2)
r1|r2 if (current ∈ first(r1))

code(r1)
else code(r2)

r ∗ while (current ∈ first(r))
code(r)

More complex cases

In other cases, a few upcoming characters (“lookahead”) are not sufficient to
determine which token is coming up.

Examples:
A language might have separate numeric literal tokens to simplify type checking:
▶ integer constants: digit digit∗
▶ floating point constants: digit digit∗ . digit digit∗

Floating point constants must contain a period (e.g., Modula-2).

Division sign begins with same character as // comments.
Equality can begin several different tokens.

In such cases, we process characters and store them until we have enough information
to make the decision on the current token.

Example of a part of a lexical analyzer

ch.current match {
case '(' => {current = OPAREN; ch.next; return}
case ')' => {current = CPAREN; ch.next; return}
case '+' => {current = PLUS; ch.next; return}
case '/' => {current = DIV; ch.next; return}
case '*' => {current = MUL; ch.next; return}
case '=' => { // more tricky because there can be =, ==
ch.next
if (ch.current == '=') {ch.next; current = CompareEQ; return}
else {current = AssignEQ; return}

}
case '<' => { // more tricky because there can be <, <=
ch.next
if (ch.current == '=') {ch.next; current = LEQ; return}
else {current = LESS; return}

}
}

What if we omit ch.next?
Lexer could generate a non-existing equality token!

Example of a part of a lexical analyzer

ch.current match {
case '(' => {current = OPAREN; ch.next; return}
case ')' => {current = CPAREN; ch.next; return}
case '+' => {current = PLUS; ch.next; return}
case '/' => {current = DIV; ch.next; return}
case '*' => {current = MUL; ch.next; return}
case '=' => { // more tricky because there can be =, ==
ch.next
if (ch.current == '=') {ch.next; current = CompareEQ; return}
else {current = AssignEQ; return}

}
case '<' => { // more tricky because there can be <, <=
ch.next
if (ch.current == '=') {ch.next; current = LEQ; return}
else {current = LESS; return}

}
}

What if we omit ch.next?

Lexer could generate a non-existing equality token!

Example of a part of a lexical analyzer

ch.current match {
case '(' => {current = OPAREN; ch.next; return}
case ')' => {current = CPAREN; ch.next; return}
case '+' => {current = PLUS; ch.next; return}
case '/' => {current = DIV; ch.next; return}
case '*' => {current = MUL; ch.next; return}
case '=' => { // more tricky because there can be =, ==
ch.next
if (ch.current == '=') {ch.next; current = CompareEQ; return}
else {current = AssignEQ; return}

}
case '<' => { // more tricky because there can be <, <=
ch.next
if (ch.current == '=') {ch.next; current = LEQ; return}
else {current = LESS; return}

}
}

What if we omit ch.next?
Lexer could generate a non-existing equality token!

White spaces and comments

Whitespace can be defined as a token, using space character, tabs, and various end of
line characters. Similarly for comments.

In most languages (Java, ML, C) white spaces and comments can occur between any
two other tokens have no meaning, so parser does not want to see them.

Convention: the lexical analyzer removes those “tokens” from its output. Instead, it
always finds the next non-whitespace non-comment token.

Other conventions and interpretations of new line became popular to make code more
concise (sensitivity to end of line or indentation). Not our problem in this course!
Tools that do formatting of source also must remember comments. We ignore those.

Skipping simple comments

if (ch.current='/') {
ch.next
if (ch.current='/') {

while (!isEOL && !isEOF) {
ch.next

}
} else {

ch.current =DIV
}

}
Nested comments: this is a single comment:
/* foo /* bar */ baz */
Solution: use a counter for nesting depth

Skipping simple comments

if (ch.current='/') {
ch.next
if (ch.current='/') {

while (!isEOL && !isEOF) {
ch.next

}
} else {

ch.current =DIV
}

}

Nested comments: this is a single comment:
/* foo /* bar */ baz */
Solution: use a counter for nesting depth

Skipping simple comments

if (ch.current='/') {
ch.next
if (ch.current='/') {

while (!isEOL && !isEOF) {
ch.next

}
} else {

ch.current =DIV
}

}
Nested comments: this is a single comment:
/* foo /* bar */ baz */
Solution:

use a counter for nesting depth

Skipping simple comments

if (ch.current='/') {
ch.next
if (ch.current='/') {

while (!isEOL && !isEOF) {
ch.next

}
} else {

ch.current =DIV
}

}
Nested comments: this is a single comment:
/* foo /* bar */ baz */
Solution: use a counter for nesting depth

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Some solutions:

ID(interpreters) LE ID(compilers)
ID(inter) ID(preters) LE ID(compilers)

ID(interpreters) LT EQ ID(compilers)

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Some solutions:

ID(interpreters) LE ID(compilers)
ID(inter) ID(preters) LE ID(compilers)

ID(interpreters) LT EQ ID(compilers)

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Some solutions:

ID(interpreters) LE ID(compilers) - OK, longest match rule
ID(inter) ID(preters) LE ID(compilers)

ID(interpreters) LT EQ ID(compilers)

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Some solutions:

ID(interpreters) LE ID(compilers) - OK, longest match rule
ID(inter) ID(preters) LE ID(compilers)

- not longest match: ID(inter)
ID(interpreters) LT EQ ID(compilers)

Longest match (maximal munch) rule

Lexical analyzer is required to be greedy: always get the longest possible token at this
time. Otherwise, there would be too many ways to split input into tokens!

Consider language with the following tokens:

ID: letter(digit | letter)∗
LE: <=
LT: <
EQ: =

How can we split this input into subsequences, each of which in a token:

interpreters <= compilers

Some solutions:

ID(interpreters) LE ID(compilers) - OK, longest match rule
ID(inter) ID(preters) LE ID(compilers)

- not longest match: ID(inter)
ID(interpreters) LT EQ ID(compilers)

- not longest match: LT

Longest match rule is greedy, but that’s OK

Consider language with ONLY these three operators:
LT: <
LE: <=
IMP: =>

For sequence:
<=>

lexer will first return LE as token, then report unknown token >.
This is the behavior that we expect.

This is despite the fact that one could in principle split the input into < and =>, which
correspond to sequence LT IMP. But such a split would not satisfy longest match rule;
we do not want it.

This is not a problem: programmer we can insert extra spaces to stop maximal munch
from taking too many characters.

Token priority
What if our token classes intersect?
Longest match rule does not help, because the same string belongs to two regular
expressions
Examples:
▶ a keyword is also an identifier
▶ a constant that can be integer or floating point

Solution is priority: order all tokens and in case of overlap take one earlier in the list
(higher priority).
Examples:
▶ if it matches regular expression for both a keyword and an identifier, then we

define that it is a keyword.
▶ if it matches both integer constant and floating point constant regular expression,

then we define it to be (for example) integer constant.
Token priorities for overlapping tokens must be specified in language definition.

Automating Construction of Lexers
by converting

Regular Expressions to Automata

Regular Expression to Programs
• How can we write a lexer that has these two classes

of tokens:
– a*b
– aaa

• Consider run of lexer on: aaaab and on: aaaaaa

Regular Expression to Programs
• How can we write a lexer that has these two classes

of tokens:
– a*b
– aaa

• Consider run of lexer on: aaaab and on: aaaaaa
• A general approach:

Regular
Expression

Finite Automaton Program

Finite Automaton (Finite State Machine)

A = (Σ, Q, q0, δ, F)

• Σ - alphabet
• Q - states (nodes in the graph)
• q0 - initial state (with ‘->' sign in drawing)

• δ - transitions (labeled edges in the graph)
• F - final states (double circles)

Numbers with Decimal Point
digit digit* . digit digit*

What if the decimal part is optional?

•DFA: is a function :
•NFA: could be a relation

•In NFA there is no unique next state. We have a set of
possible next states.

Kinds of Finite State Automata

Remark: Relations and Functions
• Relation r B x C⊆

r = { ..., (b,c1) , (b,c2) ,... }
• Corresponding function: f : B -> 2C

f = { ... (b,{c1,c2}) ... }
 f(b) = { c | (b,c) r }∈
• Given a state, next-state function returns a set of

new states
for deterministic automaton, set has exactly 1 element

Allowing Undefined Transitions

• Undefined transitions are equivalent to transition
into a sink state (from which one cannot recover)

Allowing Epsilon Transitions

• Epsilon transitions:
–traversing them does not consume anything

• Transitions labeled by a word:
–traversing them consumes the entire word

When Automaton Accepts a Word
Automaton accepts a word w iff there exists a path in the
automaton from the starting state to some accepting state
such that concatenation of words on the path gives w.

• Does the automaton accept the word a ?

Exercise
• Construct a NFA that recognizes all strings over {a,b} that contain

"aba" as a substring

Running NFA (without epsilons)
def δ(a : Char)(q : State) : Set[States] = { ... }
def δ'(a : Char, S : Set[States]) : Set[States] = {
 for (q1 <- S, q2 <- δ(a)(q1)) yield q2 // S.flatMap(δ(a))
}
def accepts(input : MyStream[Char]) : Boolean = {
 var S : Set[State] = Set(q0) // current set of states
 while (!input.EOF) {
 val a = input.current
 S = δ'(a,S) // next set of states
 }
 !(S.intersect(finalStates).isEmpty)
}

NFA Vs DFA
• Every DFA is also a NFA (they are a special case)

• For every NFA there exists an equivalent DFA that accepts
the same set of strings

• But, NFAs could be exponentially smaller (succinct)

• There are NFAs such that every DFA equivalent to it has
exponentially more number of states

Regular Expressions and Automata
Theorem:
Let L be a language. There exists a regular expression
that describes it if and only if there exists a finite
automaton that accepts it.

Algorithms:
• regular expression → automaton (important!)
• automaton → regular expression (cool)

A1:

Recursive Constructions

Union:

Concatenation:

A2:

Recursive Constructions

Star:

Exercise: (aa)* | (aaa)*
• Construct an NFA for the regular expression

NFAs to DFAs (Determinization)
• keep track of a set of all possible states in which the

automaton could be

• view this finite set as one state of new automaton

NFA to DFA Conversion

NFA to DFA Conversion

NFA to DFA Conversion

•DFA:

NFA to DFA Conversion through Examle

Clarifications

Minimizing DFAs: Procedure
• Write down all pairs of state as a table
• Every cell in the table denotes whether the

corresponding states are equivalent
q1 q2 q3 q4 q5

q1 x ? ? ? ?

q2 x ? ? ?

q3 x ? ?

q4 x ?

q5 x

Minimizing DFAs: Procedure
• Inititalize cells (q1, q2) to false if one of them is final

and other is non-final
• Make the cell (q1, q2) false, if q1 → q1’ on some

alphabet symbol and q2 → q2’ on ‘a’ and q1’ and q2’
are not equivalent

• Iterate the above process until all non-equivalent
states are found

Minimizing DFAs: Illustration

0 1 2 3 4 5 6

0 x

1 x

2 x

3 x

4 x

5 x

6 x

Properties of Automata

Emptiness of language, inclusion of one language into another,
equivalence – they are all decidable

Exercise 0.1: on Equivalence
Prove that (a*b*)* is equivalent to (a|b)*

Sequential Hardware Circuits are Automata
A = (Σ, Q, q0, δ, F)

Q – states of flip-flops, registers, etc.
 Each state qi is given by values v : Vars → {0,1}
δ – combinational circuit that determines
next state: given v compute v’ according to a
given logical circuit
Circuit can be exponentially smaller than graph

