# Computer Language Processing (CS-320)

https://lara.epfl.ch/w/cc

Viktor Kuncak, EPFL

Computer Language Processing = ?

#### A **language** can be:

- ▶ natural language (English, French, . . . )
- **▶ computer language** (Scala, Java, C, SQL, ...)
- ▶ language used to write mathematical statements:  $\forall \varepsilon. \exists \delta. \forall x. \ (|x| < \delta \Rightarrow |f(x)| < \varepsilon|)$

We can define languages mathematically as sets of strings

We can process languages: define algorithms working on strings

In this course we study algorithms to process computer languages

## Interpreters and Compilers

We are particularly interested in processing general-purpose programming languages.

#### Two main approaches:

- ▶ interpreter: execute instructions while traversing the program (Python)
- compiler: traverse program, generate executable code to run later (Rust, C)

### Portable compiler (Java, Scala, C#):

- compile (javac) to platform-independent bytecode (.class)
- use a combination of interpretation and compilation to run bytecode (java)
  - compile or interpret fast, determine important code fragments (inner loops)
  - optimize important code and swap it in for subsequent iterations

# Compilers for Programming Languages

A typical compiler processes a Turing-complete programming language and translates it into the form where it can be efficiently executed (e.g. machine code).

- ▶ gcc, clang: map C into machine instructions
- Java compiler: map Java source into bytecodes (.class files)
- Just-in-time (JIT) compiler inside the Java Virtual Machine (JVM): translate .class files into machine instructions (while running the program)

Java compiler (javac) and JIT compiler (java)

```
Counter.class bytecode

cafe babe 0000 0034
0018 0a00 0500 0b09
000c 000d 0a00 0e00
0f07 0010 0700 1101
```



java

# Inside a Java class file

```
class Counter {
public static void main(...) {
  int i = 0; int j = 0;
  while (i < 10) {
   System.out.println(j):
    i = i + 2:
   i = i + 2*i + 1: \}\}
       l iavac
Counter.class bytecode
                        iavap -c
cafe babe 0000 0034
0018 0a00 0500 0b09
000c 000d 0a00 0e00
0f07 0010 0700 1101
```

```
0: iconst 0
1: istore 1
2: iconst 0
3: istore 2
4: iload 1
5: bipush 10
7: if_icmpge 32
21: iload 2
22: iconst 2
23: iload 1
24: imul
25: iadd
26: iconst_1
```

27: iadd

28: istore 2

29: goto 4

32: return

## Compilers are Important

### **Source code** (e.g. Scala, Java, C, C++, Python)

- designed to be easy for programmers to use
- should correspond to way programmers think and help them be productive: avoid errors, write at a higher level, use abstractions, interfaces

### **Target code** (e.g. x86, arm, JVM, .NET)

- designed to efficiently run on hardware
- low level
- fast to execute, low power use

#### Compilers bridge these two worlds

essential for building complex, performant software

## Some Skills and Knowledge Learned in the Course

- Develop a compiler for a functional language
  - Write a compiler from start to end
  - Generates Web Assembly
  - generated code runs in browser or in nodejs
- libraries (e.g. parsing combinators) to build compilers: using and making them
- Analyze complex text
- ► Automatically detecting errors in code:
  - type checking
  - abstract interpretation
- ▶ (byte)code generation
- Foundations: automata, regular expressions, grammars, parsing

# Examples of the Use of This Knowledge

- understand how compilers work, use them and choose them better
- gain experience with building complex software
- build compiler for your next great language
- extend language with a new construct you need
- adapt existing compiler to new target platform (e.g. embedded CPU or graphics processor)
- regular expression handling in editors and search tools
- analyze HTML pages
- process complex input boxes in your applications (make own spreadsheet software, expression evaluators)
- process LaTeX, build computer algebra system or a proof assistant
- ▶ parse simple natural language fragments

# Compilers Bridge the Source-Target Gap in Phases

```
res = 14 + arg * 3
characters
L lexical analyzer
words
                             14
                                     arg | *
                                                                  res
 □ parser
                                                                        14
                   Assign(res. Plus(C(14), Times(V(arg), C(3))))
trees
1 name analyzer
                                                                          arg
                   (variables mapped to declarations)
graphs
1 type checker
                   Assign(res:Int, Plus(C(14), Times(V(arg):Int,C(3)))):Unit
graphs
1 intermediate code generator
intermediate code e.g. LLVM bitcode, JVM bytecode, Web Assembly
JIT compiler or platform-specific back end
machine code e.g. x86, ARM, RISC-V
```

### Front End and Back End

```
characters
words
 □ parser
trees
graphs
1 type checker
graphs
1 intermediate code generator
intermediate code
1 JIT compiler or platform-specific back end
machine code e.g. x86, ARM, RISC-V
```

#### Benefits of modularity:

- ▶ do one thing in one phase
- swap different front-end: add languages (C or Rust, Java or Scala)
- swap different back-end: add various architectures (Linux on x86 and ARM)

### Interpreters

```
characters

↓ lexical analyzer

words

↓ parser

trees ← program input

↓

program result
```

#### Comparison to a compiler:

- same front end: front end techniques apply to interpreters
- ▶ no back end: compute result using trees and graphs

# Program Trees are Crucial for Interpreters and Compilers

We call a program tree **Abstract Syntax Tree** (AST)

lacktriangle a language implementation today that does not use AST-s is a joke

Structure of trees:

- Nodes represent arithmetic operations, statements, blocks
- Leaves represent constants, variables, methods

Representation of trees:

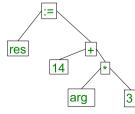
- classes in object-oriented languages
- algebraic data types in functional languages like Haskell, ML

# A Simple AST Definition in Scala

abstract class Expression
case class C(n: Int) extends Expression // constant
case class V(s: String) extends Expression // variable
case class Plus(e1: Expression, e2: Expression) extends Expression
case class Times(e1: Expression, e2: Expression) extends Expression

abstract class Statement
case class Assign(id:String, e:Expression) extends Statement
case class Block(s: List[Statement]) extends Statement

val program = Assign("res", Plus(C(14), Times(V("arg"),C(3))))



## Transforming Text Into a Tree

```
characters res = 14 + arg * 3
↓ lexical analyzer
words res = 14 + arg * 3
↓ parser
trees Assign(res, Plus(C(14), Times(V(arg),C(3))))

arg 3
```

#### First two phases:

- 1. lexical analyzer (lexer): sequence of characters  $\rightarrow$  sequence of words
- 2. syntax analyzer (parser): sequence of words  $\rightarrow$  tree

We will study *linear-time algorithms* for these problems.

We start with the underlying theory of formal languages.

## Formal Languages: Concepts

- Alphabet (A) any finite non-empty set of letters (used to write the input) e.g.  $A = \{0,1\}, E = \{a,b,c,...,z\}$
- ▶ Word (w) (akka string) finite sequence of letters (elements of the alphabet A)  $w \in A^*$  (here  $A^*$  is the set of all finite sequences of elements of A)  $A^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}$  (all words) We write sequence denoting a word by just writing one letter after another
  - $\varepsilon$  is the word of length zero (empty string) Length of the word |w| is the number of symbols (repetitions count): |01011| = 5
- Language (L) a set of words (possibly empty, possibly infinite)  $L \subseteq A^*$ 
  - e.g.  $L_1 = \{1,11,111,...\}$  (words of length one or more, containing only 1-s)  $L_2 = \{\varepsilon,00,01,10,11,0000,0001,0010,...\}$  (words of even length)
  - $L_3 = \{0, 101, 111, 00000\}$  (finite language with these specific four words)

## Definition of Words in Set Theory

Let A be the alphabet. We define words of length n, denoted  $A^n$ 

Definition:  $A^0 = \{\varepsilon\}$  (only one word of length zero, always denoted  $\varepsilon$ )

For n > 0,  $A^n = \{f \mid f : \{0, ..., n-1\} \rightarrow A\}$ 

A non-empty word is just a function that tells us what the letters are and in which order.

For w = 1011 we thus have:

$$w(0) = \mathbf{1}$$
  $w(1) = \mathbf{0}$   $w(2) = \mathbf{1}$   $w(3) = \mathbf{1}$  (We also write the pretty  $w_{(i)}$  instead of  $w(i)$ )

Set of all words:

$$A^* = \bigcup_{n \ge 0} A^n$$

which means:  $w \in A^*$  if and only iff there exists n such that  $w \in A^n$ .

Note: sometimes people represent e.g. 1011 as (1,0,1,1), but we can think of *n*-tuple as a function  $\{0,\ldots,n-1\}\to A$ , so that is equivalent.

# Word Equality

Words are equal when they have same length and same letters in the same order:

Let  $u, v \in A^*$ . Then

u = v if and only if both

- 1. |u| = |v| and
- 2. for all *i* where  $0 \le i < |u|$  we have  $u_{(i)} = v_{(i)}$

```
Words as Scala Lists
   sealed abstract class List[A] { // A is the alphabet
     def ::(t:A): List[A] = Cons(t. this)
     def length: BigInt = this match {
      case Nil() ⇒ BigInt(0)
      case Cons(h, t) \Rightarrow 1 + t.length }
     def apply(index: BigInt): A = {
      this match {
        case Cons(h,t) \Rightarrow
         if (index = BigInt(0)) h
         else t(index-1) } }
   case class Nil[A]() extends List[A]
   case class Cons[A](h: A, t: List[A]) extends List[A]
   val w = 1 :: 0 :: 1 :: 1 :: Nil[Int]() // 1011
   val n = w.length // 4
   val z = w(1) // 0
```

## Words as Inductive Structures

If  $a \in A$  and  $u \in A^*$ , let  $a \cdot u$  denote the word that starts with a and then follows with symbols from u (like Cons).

### Theorem (Decomposing a word)

Given  $w \in A^*$ , either  $w = \varepsilon$  or  $w = a \cdot v$  where  $a \in A$  and  $v \in A^*$ .

### Theorem (Equality)

Given  $u, v \in A^*$  we have u = v if and only if one of the following conditions hold:

- $\triangleright$   $u = \varepsilon$  and  $v = \varepsilon$ .
- ▶ there exists  $a \in A$  and  $u', v' \in A^*$  such that  $u = a \cdot u'$ ,  $v = a \cdot v'$  and u' = v'.

### Theorem (Structural induction for words)

Given a property of words  $P: A^* \to \{true, false\}$ , if  $P(\varepsilon)$  and, if for every letter  $a \in A$  and every u, if P(u) then  $P(a \cdot u)$ , then  $\forall u \in A^*.P(u)$ .

### Each Word is Finite. The Set of All of Them is Infinite

Each word has a finite length, and each symbol is an element from a finite set. Thus, each word is a finite object that can be written down using finitely many bits. That set of all words is countably infinite: it is as big as the set of natural numbers. For example, if  $A = \{1\}$  then each word is of the form 1...1 and is uniquely given by its length n. Thus, there is a bijection between such words and non-negative integers n, which, by definition, means that these two sets have the same cardinality. Similarly, if  $A = \{0,1\}$ , we have a bijection between positive integers and words over A: given a word of length n of the form  $k_1...k_n$  we can assign it to a strictly positive integer whose binary number representation is

$$\overline{1k_1\ldots k_n}$$

Such mapping establishes a bijection between  $A^*$  and postitive integers. More generally, we can show that, for any alphabet A the set of all words  $A^*$  is a countably infinite set. Intuitively, we can take any total ordering on A and use it to sort all words as in a dictionary. This defines a bijection with non-negative integers.

#### Concatenation

Concatenation is a fundamental operation on words, and denotes putting the words of one word after another. For example, concatenating words 01 and 10, denoted  $01 \cdot 10$ , results in the word 0110.

Concatenation of  $u = u_{(0)} \dots u_{(n-1)}$  and  $v = v_{(0)} \dots v_{(m-1)}$ , denoted  $u \cdot v$ , or uv for short, is the word

$$u_{(0)} \dots u_{(n-1)} v_{(0)} \dots v_{(m-1)}$$

#### Definition

 $u \cdot v$  is the unique word w such that |w| = |u| + |v| and for all i where  $0 \le i < |w|$ ,

$$w_{(i)} = \begin{cases} u_{(i)}, & \text{if } 0 \le i < |u| \\ v_{(i-|u|)}, & \text{if } |u| \le i < |u| + |v| \end{cases}$$

Note that it follows:  $w \cdot \varepsilon = w$  and  $\varepsilon \cdot w = w$ 

# Associativity of Concatenation

#### **Theorem**

For all  $u, v, w \in A$ ,

$$u \cdot (v \cdot w) = (u \cdot v) \cdot w$$

First, we show that the two words have the same length. Indeed.  $|u\cdot(v\cdot w)|=|u|+|v\cdot w|=|u|+|v|+|w|$  and likewise  $|(u \cdot v) \cdot w| = |u \cdot v| + |w| = |u| + |v| + |w|.$ Next, we show that the letters are same at all positions i where  $0 \le i < |u| + |v| + |w|$ . Pick any such i. There are three cases, depending on the interval to which i belongs. **Case** i < |u|. We have  $(u \cdot (v \cdot w))_{(i)} = u_{(i)}$  by the definition of concatenation. Similarly, because  $i < |u \cdot v|$ , we have that likewise  $((u \cdot v) \cdot w)_{(i)} = (u \cdot v)_{(i)} = u_{(i)}$ . Case  $|u| \le i < |u| + |v|$ . We have  $(u \cdot (v \cdot w))_{(i)} = (v \cdot w)_{i-|u|} = v_{i-|u|}$  and also  $((u \cdot v) \cdot w)_{(i)} = (u \cdot v)_i = v_{i-|u|}.$ Case  $|u| + |v| \le i$ . We have  $(u \cdot (v \cdot w))_{(i)} = (v \cdot w)_{i-|u|} = w_{i-|u|-|v|}$  and also  $((u \cdot v) \cdot w)_{(i)} = w_{i-|u \cdot v|} = w_{i-|u|-|v|}.$ 

### Free Monoid of Words

The neutral element and associativity law imply that the structure  $(A^*,\cdot,\varepsilon)$  is an algebraic structure called *monoid*. The monoid of words is called the *free monoid*. Word monoid satisfies, among others, the following additional properties (which do not hold in all monoids).

Theorem (Left cancellation law)

For every three words  $u, v, w \in A^*$ , if wu = wv, then u = v.

Theorem (Right cancellation law)

For every three words  $u, v, w \in A^*$ , if uw = vw, then u = v.

### Reversal

Reversal of a word is a word of same length with symbols but in the reverse order. Example: the reversal of the word 011, denoted  $(011)^{-1}$ , is the word 110.

#### Definition

Given  $w \in A^*$ , its reversal  $w^{-1}$  is the unique word such that  $|w^{-1}| = |w|$  and  $w_{(i)}^{-1} = w_{(|w|-1-i)}$  for all i where  $0 \le i < |w|$ .

From definition it follows that  $\varepsilon^{-1} = \varepsilon$  and that  $a^{-1} = a$  for all  $a \in A$ .

#### **Theorem**

For all 
$$u, v \in A^*$$
,  $(u^{-1})^{-1} = u$  and  $(uv)^{-1} = v^{-1}u^{-1}$ .

Every law about words has a dual version.

Here is the dual of induction principle, where we peel of last elements.

## Theorem (Structural induction for words (dual))

Given a property of words  $P: A^* \to \{true, false\}$ , if  $P(\varepsilon)$  and, if for every letter  $a \in A$  and every u, if P(u) then  $P(u \cdot a)$ , then  $\forall u \in A^*.P(u)$ .

## Prefix, Postfix, and Slice

#### Definition

Let  $u, v, w \in A^*$  such that uv = w. We then say that u is a prefix of w and that v is a suffix of w.

#### Definition

Given a word  $w \in A^*$  and two integers p,q such that  $0 \le p \le q < |w|$ , the [p,q)-slice of w, denoted  $w_{p..q}$ , is the word u such that |u| = q - p and  $u_{(i)} = w_{(p+i)}$  for all i where  $0 \le i < q - p$ .

#### **Theorem**

Let  $w \in A^*$  and  $u = w_{p..q}$  where  $0 \le p \le q < |w|$ . Then the exist words  $x, y \in A^*$  such that |x| = p, |y| = |w| - q, and w = xuy.

#### **Theorem**

 $Let \ w,u,x,y \in A^* \ and \ w = xuy. \ Then \ x = w_{0..|x|}, \ u = w_{|x|..(|x|+|u|)} \ and \ v = w_{(|x|+|u|)..|w|}.$