
Computer Language Processing (CS-320)

Viktor Kuncak, EPFL

https://lara.epfl.ch/w/cc

https://lara.epfl.ch/w/cc

Computer Language Processing = ?

A language can be:
▶ natural language (English, French, . . .)
▶ computer language (Scala, Java, C, SQL, . . .)
▶ language used to write mathematical statements: ∀ϵ.∃δ.∀x . (|x |<δ⇒ |f (x)|< ϵ|)

We can define languages mathematically as sets of strings

We can process languages: define algorithms working on strings

In this course we study algorithms to process computer languages

Interpreters and Compilers

We are particularly interested in processing general-purpose programming languages.

Two main approaches:
▶ interpreter: execute instructions while traversing the program (Python)
▶ compiler: traverse program, generate executable code to run later (Rust, C)

Portable compiler (Java, Scala, C#):
▶ compile (javac) to platform-independent bytecode (.class)
▶ use a combination of interpretation and compilation to run bytecode (java)
▶ compile or interpret fast, determine important code fragments (inner loops)
▶ optimize important code and swap it in for subsequent iterations

Compilers for Programming Languages

A typical compiler processes a Turing-complete programming language and translates
it into the form where it can be efficiently executed (e.g. machine code).

Source code in a programming language

↓ compiler

machine code

▶ gcc, clang: map C into machine instructions
▶ Java compiler: map Java source into bytecodes (.class files)
▶ Just-in-time (JIT) compiler inside the Java Virtual Machine (JVM): translate

.class files into machine instructions (while running the program)

Java compiler (javac) and JIT compiler (java)

class Counter {
public static void main(٦٦...) {
int i = 0; int j = 0;
while (i < 10) {
System.out.println(j);
i = i + 2;
j = j + 2*i + 1; }}}

↓ javac -g
Counter.class bytecode

cafe babe 0000 0034
0018 0a00 0500 0b09
000c 000d 0a00 0e00
0f07 0010 0700 1101

java−→
0
5
14
27
44

Inside a Java class file

class Counter {
public static void main(٦٦...) {
int i = 0; int j = 0;
while (i < 10) {
System.out.println(j);
i = i + 2;
j = j + 2*i + 1; }}}

↓ javac
Counter.class bytecode

cafe babe 0000 0034
0018 0a00 0500 0b09
000c 000d 0a00 0e00
0f07 0010 0700 1101

javap -c−−−−−→

0: iconst_0
1: istore_1
2: iconst_0
3: istore_2
4: iload_1
5: bipush 10
7: if_icmpge 32

٦٦...
21: iload_2
22: iconst_2
23: iload_1
24: imul
25: iadd
26: iconst_1
27: iadd
28: istore_2
29: goto 4
32: return

Compilers are Important

Source code (e.g. Scala, Java, C, C++, Python)
▶ designed to be easy for programmers to use
▶ should correspond to way programmers think and help them be productive: avoid

errors, write at a higher level, use abstractions, interfaces
Target code (e.g. x86, arm, JVM, .NET)
▶ designed to efficiently run on hardware
▶ low level
▶ fast to execute, low power use

Compilers bridge these two worlds
▶ essential for building complex, performant software

Some Skills and Knowledge Learned in the Course

▶ Develop a compiler for a functional language
▶ Write a compiler from start to end
▶ Generates Web Assembly
▶ generated code runs in browser or in nodejs

▶ libraries (e.g. parsing combinators) to build compilers: using and making them
▶ Analyze complex text
▶ Automatically detecting errors in code:
▶ type checking
▶ abstract interpretation

▶ (byte)code generation
▶ Foundations: automata, regular expressions, grammars, parsing

Examples of the Use of This Knowledge

▶ understand how compilers work, use them and choose them better
▶ gain experience with building complex software
▶ build compiler for your next great language
▶ extend language with a new construct you need
▶ adapt existing compiler to new target platform

(e.g. embedded CPU or graphics processor)
▶ regular expression handling in editors and search tools
▶ analyze HTML pages
▶ process complex input boxes in your applications

(make own spreadsheet software, expression evaluators)
▶ process LaTeX, build computer algebra system or a proof assistant
▶ parse simple natural language fragments

Compilers Bridge the Source-Target Gap in Phases

characters res = 14 + arg * 3
↓ lexical analyzer
words res = 14 + arg * 3
↓ parser
trees Assign(res, Plus(C(14), Times(V(arg),C(3))))
↓ name analyzer
graphs (variables mapped to declarations)
↓ type checker
graphs Assign(res:Int, Plus(C(14), Times(V(arg):Int,C(3)))):Unit
↓ intermediate code generator
intermediate code e.g. LLVM bitcode, JVM bytecode, Web Assembly
↓ JIT compiler or platform-specific back end
machine code e.g. x86, ARM, RISC-V

Front End and Back End
ba

ck
en

d
fro

nt
en

d characters
↓ lexical analyzer
words
↓ parser
trees
↓ name analyzer
graphs
↓ type checker
graphs
↓ intermediate code generator
intermediate code
↓ JIT compiler or platform-specific back end
machine code e.g. x86, ARM, RISC-V

Benefits of modularity:
▶ do one thing in one phase
▶ swap different front-end: add

languages
(C or Rust, Java or Scala)
▶ swap different back-end: add

various architectures
(Linux on x86 and ARM)

Interpreters

characters
↓ lexical analyzer
words
↓ parser
trees ←−−−−−−−−−−−−−−−−−−− program input
↓
program result

Comparison to a compiler:
▶ same front end: front end techniques apply to interpreters
▶ no back end: compute result using trees and graphs

Program Trees are Crucial for Interpreters and Compilers

We call a program tree Abstract Syntax Tree (AST)
▶ a language implementation today that does not use AST-s is a joke

Structure of trees:
▶ Nodes represent arithmetic operations, statements, blocks
▶ Leaves represent constants, variables, methods

Representation of trees:
▶ classes in object-oriented languages
▶ algebraic data types in functional languages like Haskell, ML

A Simple AST Definition in Scala
abstract class Expression
case class C(n: Int) extends Expression ٦// constant
case class V(s: String) extends Expression ٦// variable
case class Plus(e1: Expression, e2: Expression) extends Expression
case class Times(e1: Expression, e2: Expression) extends Expression

abstract class Statement
case class Assign(id:String, e:Expression) extends Statement
case class Block(s: List[Statement]) extends Statement

val program = Assign("res", Plus(C(14), Times(V("arg"),C(3))))

Transforming Text Into a Tree

characters res = 14 + arg * 3
↓ lexical analyzer
words res = 14 + arg * 3
↓ parser
trees Assign(res, Plus(C(14), Times(V(arg),C(3))))

First two phases:
1. lexical analyzer (lexer): sequence of characters → sequence of words
2. syntax analyzer (parser): sequence of words → tree

We will study linear-time algorithms for these problems.

We start with the underlying theory of formal languages.

Formal Languages: Concepts

▶ Alphabet (A) - any finite non-empty set of letters (used to write the input)
e.g. A= {0,1}, E = {a,b,c , . . . ,z}
▶ Word (w) (akka string) - finite sequence of letters (elements of the alphabet A)

w ∈A∗ (here A∗ is the set of all finite sequences of elements of A)
A∗= {ϵ,0,1,00,01,10,11,000,001, . . .} (all words)
We write sequence denoting a word by just writing one letter after another
ϵ is the word of length zero (empty string)
Length of the word |w | is the number of symbols (repetitions count): |01011|= 5
▶ Language (L) - a set of words (possibly empty, possibly infinite)

L⊆A∗
e.g. L1 = {1,11,111, . . .} (words of length one or more, containing only 1-s)
L2 = {ϵ,00,01,10,11,0000,0001,0010, . . .} (words of even length)
L3 = {0,101,111,00000} (finite language with these specific four words)

Definition of Words in Set Theory
Let A be the alphabet. We define words of length n, denoted An

Definition: A0 = {ϵ} (only one word of length zero, always denoted ϵ)
For n> 0, An = {f | f : {0, . . . ,n−1}→A}
A non-empty word is just a function that tells us what the letters are and in which
order.
For w = 1011 we thus have:
w(0)= 1 w(1)= 0 w(2)= 1 w(3)= 1

(We also write the pretty w(i) instead of w(i))
Set of all words:

A∗=
∪
n≥0

An

which means: w ∈A∗ if and only iff there exists n such that w ∈An.
Note: sometimes people represent e.g. 1011 as (1,0,1,1), but we can think of n-tuple
as a function {0, . . . ,n−1}→A, so that is equivalent.

Word Equality

Words are equal when they have same length and same letters in the same order:

Let u,v ∈A∗. Then

u = v if and only if both
1. |u|= |v | and
2. for all i where 0≤ i < |u| we have u(i)= v(i)

Words as Scala Lists
sealed abstract class List[A] { ٦// A is the alphabet
def ٦::(t:A): List[A] = Cons(t, this)
def length: BigInt = this match {
case Nil() ٦=> BigInt(0)
case Cons(h, t) ٦=> 1 + t.length }

def apply(index: BigInt): A = {
this match {
case Cons(h,t) ٦=>
if (index ٦== BigInt(0)) h
else t(index-1) } }

}
case class Nil[A]() extends List[A]
case class Cons[A](h: A, t: List[A]) extends List[A]

val w = 1 ٦:: 0 ٦:: 1 ٦:: 1 ٦:: Nil[Int]() ٦// 1011
val n = w.length ٦// 4
val z = w(1) ٦// 0

Words as Inductive Structures

If a ∈A and u ∈A∗, let a ·u denote the word that starts with a and then follows with
symbols from u (like Cons).

Theorem (Decomposing a word)
Given w ∈A∗, either w = ϵ or w = a · v where a ∈A and v ∈A∗.

Theorem (Equality)
Given u,v ∈A∗ we have u = v if and only if one of the following conditions hold:
▶ u = ϵ and v = ϵ.
▶ there exists a ∈A and u′,v ′ ∈A∗ such that u = a ·u′, v = a · v ′ and u′= v ′.

Theorem (Structural induction for words)
Given a property of words P :A∗→{true, false}, if P(ϵ) and, if for every letter a ∈A
and every u, if P(u) then P(a ·u), then ∀u ∈A∗.P(u).

Each Word is Finite. The Set of All of Them is Infinite
Each word has a finite length, and each symbol is an element from a finite set. Thus,
each word is a finite object that can be written down using finitely many bits.
That set of all words is countably infinite: it is as big as the set of natural numbers.
For example, if A= {1} then each word is of the form 1 . . .1 and is uniquely given by its
length n. Thus, there is a bijection between such words and non-negative integers n,
which, by definition, means that these two sets have the same cardinality. Similarly, if
A= {0,1}, we have a bijection between positive integers and words over A: given a
word of length n of the form k1 . . .kn we can assign it to a strictly positive integer
whose binary number representation is

1k1 . . .kn

Such mapping establishes a bijection between A∗ and postitive integers. More
generally, we can show that, for any alphabet A the set of all words A∗ is a countably
infinite set. Intuitively, we can take any total ordering on A and use it to sort all words
as in a dictionary. This defines a bijection with non-negative integers.

Concatenation

Concatenation is a fundamental operation on words, and denotes putting the words of
one word after another. For example, concatenating words 01 and 10, denoted 01 ·10,
results in the word 0110.
Concatenation of u = u(0) . . .u(n−1) and v = v(0) . . .v(m−1), denoted u ·v , or uv for short,
is the word

u(0) . . .u(n−1)v(0) . . .v(m−1)

Definition
u · v is the unique word w such that |w |= |u|+ |v | and for all i where 0≤ i < |w |,

w(i)=

�
u(i), if 0≤ i < |u|

v(i−|u|), if |u| ≤ i < |u|+ |v |

Note that it follows: w · ϵ=w and ϵ ·w =w

Associativity of Concatenation

Theorem
For all u,v ,w ∈A,

u · (v ·w)= (u · v) ·w
First, we show that the two words have the same length. Indeed,
|u · (v ·w)|= |u|+ |v ·w |= |u|+ |v |+ |w | and likewise
|(u · v) ·w |= |u · v |+ |w |= |u|+ |v |+ |w |.
Next, we show that the letters are same at all positions i where 0≤ i < |u|+ |v |+ |w |.
Pick any such i . There are three cases, depending on the interval to which i belongs.
Case i < |u|. We have (u · (v ·w))(i)= u(i) by the definition of concatenation.
Similarly, because i < |u · v |, we have that likewise ((u · v) ·w)(i)=(u · v)(i)= u(i).
Case |u| ≤ i < |u|+ |v |. We have (u · (v ·w))(i)=(v ·w)i−|u|= vi−|u| and also
((u · v) ·w)(i)=(u · v)i = vi−|u|.
Case |u|+ |v | ≤ i . We have (u · (v ·w))(i)=(v ·w)i−|u|=wi−|u|−|v | and also
((u · v) ·w)(i)=wi−|u·v |=wi−|u|−|v |.

Free Monoid of Words

The neutral element and associativity law imply that the structure (A∗, ·,ϵ) is an
algebraic structure called monoid. The monoid of words is called the free monoid.
Word monoid satisfies, among others, the following additional properties (which do not
hold in all monoids).

Theorem (Left cancellation law)
For every three words u,v ,w ∈A∗, if wu =wv, then u = v.

Theorem (Right cancellation law)
For every three words u,v ,w ∈A∗, if uw = vw, then u = v.

Reversal
Reversal of a word is a word of same length with symbols but in the reverse order.
Example: the reversal of the word 011, denoted (011)−1, is the word 110.

Definition
Given w ∈A∗, its reversal w−1 is the unique word such that |w−1|= |w | and
w−1
(i) =w(|w |−1−i) for all i where 0≤ i < |w |.

From definition it follows that ϵ−1 = ϵ and that a−1 = a for all a ∈A.

Theorem
For all u,v ∈A∗, (u−1)−1 = u and (uv)−1 = v−1u−1.
Every law about words has a dual version.
Here is the dual of induction principle, where we peel of last elements.

Theorem (Structural induction for words (dual))
Given a property of words P :A∗→{true, false}, if P(ϵ) and, if for every letter a ∈A
and every u, if P(u) then P(u ·a), then ∀u ∈A∗.P(u).

Prefix, Postfix, and Slice

Definition
Let u,v ,w ∈A∗ such that uv =w . We then say that u is a prefix of w and that v is a
suffix of w .

Definition
Given a word w ∈A∗ and two integers p,q such that 0≤ p ≤ q ≤ |w |, the [p,q)-slice of
w , denoted w[p,q), is the word u such that |u|= q−p and u(i)=w(p+i) for all i where
0≤ i < q−p.

Theorem
Let w ∈A∗ and u =w[p,q) where 0≤ p ≤ q ≤ |w |. Then the exist words x ,y ∈A∗ such
that |x |= p, |y |= |w | −q, and w = xuy.

Theorem
Let w ,u,x ,y ∈A∗ and w = xuy. Then x =w[0,|x |), u =w[|x |,|x |+|u|) and v =w[|x |+|u|,|w |).

Slice in Scala

w ∈A∗, 0≤ p ≤ q ≤ |w |, [p,q)-slice of w , denoted w[p,q), is u such that |u|= q−p and
u(i)=w(p+i) for all i where 0≤ i < q−p.

def slice(i: BigInt, j: BigInt): List[T] = {
require(0 <= i ٦&& i <= j ٦&& j <= length)
this match {
case Nil() ٦=> Nil()
case Cons(h,t) ٦=>
if (i ٦== 0 ٦&& j ٦== 0) Nil()
else if (i ٦== 0) Cons(h, t.slice(0, j-1))
else t.slice(i-1, j-1)

}
} ensuring(_.size ٦== j - i)

