
Computer Language Processing - Exercise Session 6 

Type Soundness & Subtyping 

Exercise 1 
Consider a simple programming language with integer arithmetic, boolean expressions and 
user-defined functions. 
 
T := Int | Bool | (T1, …, Tn) => T 
t := true | false | cl 
   | t1 == t2 | t1 + t2 | t1 && t2 
   | if (t1) t2 else t3 
   | f(t1, … , tn) | x 
 
Where cl represents integer literals, == represents equality (between integers, as well as 
between booleans), + represents the usual integer addition and && represents conjunction. 
The meta-variable f refers to names of user-defined function and x refers to names of 
variables. 
 
You may assume that you have a fixed environment e which contains information about 
user-defined functions (i.e. the function arguments, their types, the function body and the 
result type). 

Part 1 
Write down the "usual" typing rules for this language. 
 
Solution: 
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Part 2 
Inductively define the substitution operation for your terms, which replaces every free 
occurence of a variable in an expression by an expression without free variables. 
 
Solution: 
 

 
 
Prove that substitution preserves the type of an expression, given that the variable and the 
expression have the same type. 
 
Solution: 
 
We are given an expression t, an identifier x and a replacement expression e. 
We assume that t type checks to type T in an environment E where x is defined at type Tx (if 
x is not defined in the environment, the proof is trivial). 
We also assume that the expression e type checks to Tx in the empty environment (e 
doesn't contain free variables). 
 
The idea is simple. If t type check in environment E, then we must have a derivation tree for 
E |- t : T. We must also have a derivation for ø |- e : Tx. We can get a derivation tree for E |- 
t[x := e] : Tx by replacing, in the original derivation tree, all subtrees rooted at E' |- x : Tx by a 
derivation tree for E' |- e : Tx, which is possible due to ø |- e : Tx. Qed.  
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Part 3 
Write the operational semantics rules for the language, assuming call-by-name semantics 
for function calls. In call-by-name semantics, the arguments of a function are not evaluated 
before the call. In your operational semantics, parameters in the function body are to merely 
be substituted by the corresponding unevaluated argument expression. 
 

 

Part 4 
Adapt the soundness proof seen in the last lecture to account for the new semantics. Prove 
only the cases related to function application. 
 
Solution: 
 
Progress is straightforward, as the call-by-name rule always applied. Preservation follows 
from the fact that substitution preserves types. 
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Exercise 2 
In this second exercise, we will have a look at a simple programming language with the 
following types and terms: 
 
 

T := Integer | Pos | Neg 

t := cl | t1 + t2 | t1 * t2 | t1 / t2 
 

 

Integer is the type of all integer numbers, while Pos is the type of all strictly positive integer 
numbers and Neg the type of all strictly negative numbers. Note that, interestingly, some 
terms will accept multiple types. 
 
For instance, 14 will have the types Integer and Pos, while -2 will have the types Integer 
and Neg. The constant 0 on the other hand will only have the type Integer. 
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Part 1 
Write down typing rules for the terms of the language. Try to preserve information about 
positivity and negativity. Also, make sure that your type system prohibits division by zero. 
 
Solution: 
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Part 2 
Under your type system, what are the types, if any, of the following terms? Write down a 
derivation for each possible type. 
 
Solution: (Derivations not shown) 
 

1 + 1  // Integer, Pos 

 

-2 * 4  // Integer, Neg 

 

-1 * (2 + -1) // Integer 

 

7 / (18 + -1) // No types. 

Part 3 
We now introduce a new relation, T1 <: T2, which we call the subtyping relation. 
 
T1 <: T2 can be read as “T1 is a subtype of T2”. When T1 <: T2, terms of type T1 can safely 
be used in the context where terms of type T2 are expected. In this exercise, what pairs of 
types can be made part of this subtyping relation? List all such possible pairs. 
 
Solution: 
 

Integer <: Integer 

Pos <: Pos 

Neg <: Neg 

Pos <: Integer 

Neg <: Integer 

Part 4 
Write down the subsumption rule, which bridges the gap between the subtyping relation and 
the typing relation. The rule should state that if a term has a type T1 and T1 is a subtype of T2, 
then the term has also type T2. 
 
Solution: 
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Now that you have defined this rule, can you remove some of the typing rules you had 
previously defined for the various constructs of the language ? 
 
Solution: (Remaing rules shown) 
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Part 5 
Let’s now expand our language and add a primitive “power” function to it: 
 
t := … | power(t1, t2) 
 

With the following typing rule: 
 
 
            Γ ⊢ t1 : Integer    Γ ⊢ t2 : Integer 
            ------------------------------------ 

                 Γ ⊢ power(t1, t2) : Integer 
 

 
 
Typecheck the following expression under the empty environment. Show a type derivation. 
 
 

power(7 / 2, 3) 
 

Solution: 
 

 
 
Does there exist multiple valid type derivations that assign the same type to the above 
expression? 
 
Solution: With the modified typing rules of part 4, there are multiples possible derivation 
trees. Indeed, it is possible to apply the subsumption rule an arbitrarily number of times by 
having the two types be equal. Ignoring that trivial transformation, then there is only one 
possible derivation.  
 
 


