
Computer Language Processing - Exercise Session 6

Type Soundness & Subtyping

Exercise 1
Consider a simple programming language with integer arithmetic, boolean expressions and
user-defined functions.

T := Int | Bool | (T​1​, …, T​n​) => T
t := true | false | c​l
 | t​1​ == t​2​ | t​1​ + t​2​ | t​1​ && t​2
 | if (t​1​) t​2​ else t​3
 | f(t​1​, … , t​n​) | x

Where ​c​l​ represents integer literals, ​==​ represents equality (between integers, as well as
between booleans), ​+​ represents the usual integer addition and ​&&​ represents conjunction.
The meta-variable ​f​ refers to names of user-defined function and ​x​ refers to names of
variables.

You may assume that you have a fixed environment ​e​ which contains information about
user-defined functions (i.e. the function arguments, their types, the function body and the
result type).

Part 1
Write down the ​"usual"​ typing rules for this language.

Part 2
Inductively define the substitution operation for your terms, which replaces every free
occurence of a variable in an expression by an expression ​without free variables​.

Prove that substitution preserves the type of an expression, given that the variable and the
expression have the same type.

Part 3
Write the operational semantics rules for the language, assuming ​call-by-name​ semantics
for function calls. In call-by-name semantics, the arguments of a function are not evaluated
before the call. In your operational semantics, parameters in the function body are to merely
be substituted by the corresponding unevaluated argument expression.

Part 4
Adapt the soundness proof seen in the last lecture to account for the new semantics. Prove
only the cases related to function application.

Computer Language Processing - Exercise Session 6

Exercise 2
In this second exercise, we will have a look at a simple programming language with the
following types and terms:

T := Integer | Pos | Neg

t := c​l​ | t​1​ + t​2​ | t​1​ * t​2​ | t​1​ / t​2

Integer​ is the type of all integer numbers, while ​Pos​ is the type of all ​strictly​ positive integer
numbers and ​Neg​ the type of all ​strictly​ negative numbers. Note that, interestingly, some
terms will accept multiple types.

For instance, ​14​ will have the types ​Integer​ and ​Pos​, while ​-2​ will have the types ​Integer
and ​Neg​. The constant ​0​ on the other hand will only have the type ​Integer​.

Part 1
Write down typing rules for the terms of the language. Try to preserve information about
positivity and negativity. Also, make sure that your type system prohibits division by zero.

Part 2
Under your type system, what are the types, if any, of the following terms? Write down a
derivation for each possible type.

1 + 1

-2 * 4

-1 * (2 + -1)

7 / (18 + -1)

Computer Language Processing - Exercise Session 6

Part 3
We now introduce a new relation, ​T​1​ <: T​2​, which we call the ​subtyping​ relation.

T​1​ <: T​2​ can be read as “​T​1​ is a subtype of ​T​2​”. When ​T​1​ <: T​2​,​ ​terms of type T​1​ can safely
be used in the context where terms of type T​2​ are expected.​ ​In this exercise, what pairs of
types can be made part of this subtyping relation? List all such possible pairs.

Part 4
Write down the ​subsumption​ rule, which bridges the gap between the subtyping relation and
the typing relation. The rule should state that if a term has a type ​T​1​ and ​T​1​ is a subtype of ​T​2​,
then the term has also type ​T​2​.

Now that you have defined this rule, can you remove some of the typing rules you had
previously defined for the various constructs of the language ?

Part 5
Let’s now expand our language and add a primitive “​power​” function to it:

t := … | power(t​1​, t​2​)

With the following typing rule:

 Γ ⊢ t​1​ : Integer Γ ⊢ t​2​ : Integer

 Γ ⊢ power(t​1​, t​2​) : Integer

Typecheck the following expression under the empty environment. Show a type derivation.

power(7 / 2, 3)

Does there exist multiple valid type derivations that assign the same type to the above
expression?

