
Computer Language Processing - Exercise Session 1

Formal Languages & Regular Languages

Exercise 1
Let the alphabet ​A​ be binary digits. A = { 0, 1 }

For the exercise, we consider each word of ​A*​ to represent a number in ​ℕ​, in the usual way:
0 represents 0
1 represents 1
110 represents 6
1010 represents 10

Note that leading zeros are ignored, and that the empty string ​Ɛ​ is assigned the value 0.
0011 represents 3
Ɛ represents 0

Question 1.1
Define a function ​f : A* → ​ℕ​ that converts words over the alphabet ​A​ into numbers in ​ℕ
according to the above specification.

Question 1.2
Let ​E​ be the language of even numbers: E = { w ∈ A* | f(w) is even }

Prove that ​EE = E​. To do so, prove that all elements of ​E​ are also elements of ​EE​, and that all
elements of ​EE​ are also elements of ​E​.

Question 1.3
Prove that ​E* = E​. You may find the fact you have proven in question 1.2 to be useful here.

Question 1.4
Build a regular expression whose language is ​E​.

Exercise 2
Let ​A​ be some alphabet and let ​f: A* → {true, false} ​be a computable function from ​A*​ to ​true
or ​false​. Let ​L​ be the language defined by ​f​.

L = { w ∈ A* | f(w) = true }

Find an algorithm that, given a word over the alphabet A, decides whether the word is part of
L*​, the Kleene closure of ​L​. Your algorithm may of course invoke ​f​, but only a number of
times polynomial in the size of the input word.

Computer Language Processing - Exercise Session 1

Exercise 3
There are basic properties of formal languages that you will frequently encounter when
working with such objects.

One such property is ​nullability​. We say that a language ​L ⊆ A*​ is ​nullable​ if it contains the
empty word ​Ɛ​. This property looks innocent enough, but the nullability of a language will
often be relevant.

Another such property is the so-called ​first​ set of a language. We define the ​first​ set of a
language ​L ⊆ A*​ to be the set of characters in ​A​ that appear at the start of a word in ​L​.

first(L) := { w​0​ | w ∈ L }

Question 3.1
Give a recursive function to compute the nullability of a regular expression.

Question 3.2
Give a recursive function to compute the ​first​ set for regular expressions.

Exercise 4
Let ​A​ be some alphabet and​ L​ be a language over ​A​. We define the derivative of a language
L​ with respect to an element ​x​ of ​A​ to be the set of all words ​w​ such that ​xw​ is in ​L​.

= { w ∈ A* | xw ∈ L }dx
dL

Question 4.1
Prove that whenever a language is regular, then its derivation is also regular. To do so, build
a recursive function that return a regular expression for the derivation of ​L​ with respect to ​x
given a regular expression for ​L​.

Question 4.2
Can you come up with an algorithm to decide whether a word is part of the language of a
regular expression using regular expression derivation?

