
Computer Language Processing - Exercise Session 1 

Formal Languages & Regular Languages 

Exercise 1 
Let the alphabet A be binary digits. A = { 0, 1 } 
 

For the exercise, we consider each word of A* to represent a number in ℕ, in the usual way: 
0 represents 0 
1 represents 1 
110 represents 6 
1010 represents 10 
 

Note that leading zeros are ignored, and that the empty string Ɛ is assigned the value 0. 
0011 represents 3 
Ɛ represents 0 

Question 1.1 
Define a function f : A* → ℕ that converts words over the alphabet A into numbers in ℕ 
according to the above specification.  

Question 1.2 
Let E be the language of even numbers: E = { w ∈ A* | f(w) is even } 
 
Prove that EE = E. To do so, prove that all elements of E are also elements of EE, and that all 
elements of EE are also elements of E. 

Question 1.3 
Prove that E* = E. You may find the fact you have proven in question 1.2 to be useful here. 

Question 1.4 
Build a regular expression whose language is E. 

Exercise 2 
Let A be some alphabet and let f: A* → {true, false} be a computable function from A* to true 
or false. Let L be the language defined by f. 

 
L = { w ∈ A* | f(w) = true } 

 
Find an algorithm that, given a word over the alphabet A, decides whether the word is part of 
L*, the Kleene closure of L. Your algorithm may of course invoke f, but only a number of 
times polynomial in the size of the input word. 
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Exercise 3 
There are basic properties of formal languages that you will frequently encounter when 
working with such objects. 
 
One such property is nullability. We say that a language L ⊆ A* is nullable if it contains the 
empty word Ɛ. This property looks innocent enough, but the nullability of a language will 
often be relevant. 
 
Another such property is the so-called first set of a language. We define the first set of a 
language L ⊆ A* to be the set of characters in A that appear at the start of a word in L. 
 

first(L) := { w0 | w ∈ L } 
 

Question 3.1 
Give a recursive function to compute the nullability of a regular expression. 
 

Question 3.2 
Give a recursive function to compute the first set for regular expressions. 

Exercise 4 
Let A be some alphabet and L be a language over A. We define the derivative of a language 
L with respect to an element x of A to be the set of all words w such that xw is in L. 
 

= { w ∈ A* | xw ∈ L }dx
dL

 

 

Question 4.1 
Prove that whenever a language is regular, then its derivation is also regular. To do so, build 
a recursive function that return a regular expression for the derivation of L with respect to x 
given a regular expression for L. 

Question 4.2 
Can you come up with an algorithm to decide whether a word is part of the language of a 
regular expression using regular expression derivation? 


