
Computer Language Processing - Exercise Session 1 

Formal Languages & Regular Languages 

Exercise 1 
Let the alphabet ​A​ be binary digits. A = { 0, 1 } 
 

For the exercise, we consider each word of ​A*​ to represent a number in ​ℕ​, in the usual way: 
0 represents 0 
1 represents 1 
110 represents 6 
1010 represents 10 
 

Note that leading zeros are ignored, and that the empty string ​Ɛ​ is assigned the value 0. 
0011 represents 3 
Ɛ represents 0 

Question 1.1 
Define a function ​f : A* → ​ℕ​ that converts words over the alphabet ​A​ into numbers in ​ℕ 
according to the above specification.  

Question 1.2 
Let ​E​ be the language of even numbers: E = { w ∈ A* | f(w) is even } 
 
Prove that ​EE = E​. To do so, prove that all elements of ​E​ are also elements of ​EE​, and that all 
elements of ​EE​ are also elements of ​E​. 

Question 1.3 
Prove that ​E* = E​. You may find the fact you have proven in question 1.2 to be useful here. 

Question 1.4 
Build a regular expression whose language is ​E​. 

Exercise 2 
Let ​A​ be some alphabet and let ​f: A* → {true, false} ​be a computable function from ​A*​ to ​true 
or ​false​. Let ​L​ be the language defined by ​f​. 

 
L = { w ∈ A* | f(w) = true } 

 
Find an algorithm that, given a word over the alphabet A, decides whether the word is part of 
L*​, the Kleene closure of ​L​. Your algorithm may of course invoke ​f​, but only a number of 
times polynomial in the size of the input word. 
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Exercise 3 
There are basic properties of formal languages that you will frequently encounter when 
working with such objects. 
 
One such property is ​nullability​. We say that a language ​L ⊆ A*​ is ​nullable​ if it contains the 
empty word ​Ɛ​. This property looks innocent enough, but the nullability of a language will 
often be relevant. 
 
Another such property is the so-called ​first​ set of a language. We define the ​first​ set of a 
language ​L ⊆ A*​ to be the set of characters in ​A​ that appear at the start of a word in ​L​. 
 

first(L) := { w​0​ | w ∈ L } 
 

Question 3.1 
Give a recursive function to compute the nullability of a regular expression. 
 

Question 3.2 
Give a recursive function to compute the ​first​ set for regular expressions. 

Exercise 4 
Let ​A​ be some alphabet and​ L​ be a language over ​A​. We define the derivative of a language 
L​ with respect to an element ​x​ of ​A​ to be the set of all words ​w​ such that ​xw​ is in ​L​. 
 

= { w ∈ A* | xw ∈ L }dx
dL

 

 

Question 4.1 
Prove that whenever a language is regular, then its derivation is also regular. To do so, build 
a recursive function that return a regular expression for the derivation of ​L​ with respect to ​x 
given a regular expression for ​L​. 

Question 4.2 
Can you come up with an algorithm to decide whether a word is part of the language of a 
regular expression using regular expression derivation? 


