
Computer Language Processing - Exercise Session 1

Formal Languages & Regular Languages

Exercise 1
Let the alphabet A be binary digits. A = { 0, 1 }

For the exercise, we consider each word of A* to represent a number in ℕ, in the usual way:
0 represents 0
1 represents 1
110 represents 6
1010 represents 10

Note that leading zeros are ignored, and that the empty string Ɛ is assigned the value 0.
0011 represents 3
Ɛ represents 0

Question 1.1
Define a function f : A* → ℕ that converts words over the alphabet A into numbers in ℕ
according to the above specification.

Question 1.2
Let E be the language of even numbers: E = { w ∈ A* | f(w) is even }

Prove that EE = E. To do so, prove that all elements of E are also elements of EE, and that all
elements of EE are also elements of E.

Question 1.3
Prove that E* = E. You may find the fact you have proven in question 1.2 to be useful here.

Question 1.4
Build a regular expression whose language is E.

Exercise 2
Let A be some alphabet and let f: A* → {true, false} be a computable function from A* to true
or false. Let L be the language defined by f.

L = { w ∈ A* | f(w) = true }

Find an algorithm that, given a word over the alphabet A, decides whether the word is part of
L*, the Kleene closure of L. Your algorithm may of course invoke f, but only a number of
times polynomial in the size of the input word.

Computer Language Processing - Exercise Session 1

Exercise 3
There are basic properties of formal languages that you will frequently encounter when
working with such objects.

One such property is nullability. We say that a language L ⊆ A* is nullable if it contains the
empty word Ɛ. This property looks innocent enough, but the nullability of a language will
often be relevant.

Another such property is the so-called first set of a language. We define the first set of a
language L ⊆ A* to be the set of characters in A that appear at the start of a word in L.

first(L) := { w0 | w ∈ L }

Question 3.1
Give a recursive function to compute the nullability of a regular expression.

Question 3.2
Give a recursive function to compute the first set for regular expressions.

Exercise 4
Let A be some alphabet and L be a language over A. We define the derivative of a language
L with respect to an element x of A to be the set of all words w such that xw is in L.

= { w ∈ A* | xw ∈ L }dx
dL

Question 4.1
Prove that whenever a language is regular, then its derivation is also regular. To do so, build
a recursive function that return a regular expression for the derivation of L with respect to x
given a regular expression for L.

Question 4.2
Can you come up with an algorithm to decide whether a word is part of the language of a
regular expression using regular expression derivation?

