
Dynamic Memory, Objects, Closures,
and More



Kinds of Memory in Compiled Programs
Program Data Typical Machine Representation

intermediate values registers, stack
local variables, parameters registers, stack

return addresses of function calls stack (+ 1 register)
global variables data segment, pre-allocated

algebraic data type values dynamic heap
objects dynamic heap

closures (first class functions) dynamic heap

Pre-allocated memory has fixed size at compile time
Stack can grow, but must shrink in the LIFO way

Heap is most general: allocate and deallocate in any order
I if we never de-allocate (as in the project), can use a stack separate from the stack

for locals and returns
 out of memory unnecessarily



Memory as Array

Languages like C traditionally give full access to program memory through pointers
that can be manipulated (and even write to stack!)
In C, the heap can be implemented as a library with malloc and free, and that uses
operating system calls to obtain large blocks of available memory, then treats them as
large arrays of bytes.
typedef struct node { // size 8 bytes

int content; // offset 0
struct node * next; // offset 4

} node_t;
head = malloc(sizeof(node_t)); // head = 8 bytes on heap
head -> content = 42; // RAM[head] = 42
second = malloc(sizeof(node_t)); // second = get 8bytes
head -> next = second; // RAM[head + 4] = second



Malloc and Free Using Free List
Need to know which memory is used and which is fresh.
Because allocation and de-allocation is in any order, memory array has interleaved
regions of allocated and free memory.
Approach:
I allocated memory is responsibility of the program
I create a list of free blocks using only free memory!

What is free and unused memory for the application is a linked list data structure for
the allocator
I list elements are variable length: size stored in each block
I allocation: find a sufficient block, split it, update the free list, return the split of

part
I deallocation inserts the block into list, if possible merge with adjacent blocks

See also:
I Lectures of David August at This Link
I D. Knuth, The Art of Computer Programming, Vol. 1, "Dynamic Storage

Allocation"

https://www.cs.princeton.edu/courses/archive/fall07/cos217/lectures/14Memory-2x2.pdf


Lack of Memory Safety

Using pointers is flexible and easy to compile: emit memory access instructions and
library calls to malloc and free.
I but it is not memory safe!

long* x = malloc(...);
*x = 9876543;
free(x);
// x is now dangling pointer
long* y = malloc(...);
*y = 1234567;
// y might use part of same memory as x
*x = 0;
// now *y may be changed and even corrupted

To ensure memory safety: cannot allow developer to use ’free’ arbitrarily
I we want automated memory management



Automated Memory Management

Reference counting: maintain a field in each heap object that counts how many
references to this object exist.
x.f = y

becomes:
x.f.count--;
if (x.f.count==0) deallocate(x.f)
y.count++;
x.f=y

Deallocation also decrements references and can recursively deallocate other objects.
This works as long as there are no cycles.
See: Automatic Reference Counting in Swift

Forms of compile time reference counting in Rust: Ownership, References and
Borrowing

https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/AutomaticReferenceCounting.html
https://doc.rust-lang.org/1.8.0/book/ownership.html
https://doc.rust-lang.org/1.8.0/book/references-and-borrowing.html
https://doc.rust-lang.org/1.8.0/book/references-and-borrowing.html


Garbage Collection

To automatically collect cyclic data structures and convenient functional programming
with sharing data we use garbage collection (already introduced in LISP).
Periodically mark all objects reachable from global and local variables of all stack
frames, free up the rest as garbage

Two main types of garbage collection algorithms:
I mark and sweep: mark all reachable objects and put them in a free list (good if

there is little garbage, but suffers from fragmentation)
I copying collector: use twice the space, after marking copy all useful data into a

separate region and put blocks next to each other
Generational collector: organize objects by generations, collect newly allocated objects
more often, if they survive multiple collections, promote them to older generation.
Typically used in Java: generational parallel copying collector



Compiler Support for Garbage Collection

Collector needs to know:
I how to find roots in global variables, stack, registers (or ensure references are

never only in registers)
I how to follow (non-weak) references through objects

For this, some amount of run-time type information is needed.
Generational GC may need to traverse all older generations to know what is alive in
new generation. To speed this up, GC can use information that ensures that certaing
groups of objects do not point to newer generation. To maintain that information,
compiler may need to instrument all writes of object fields, with overhead similar to
that of reference counting.



Dynamic Dispatch
Dynamic dispatch is key to object-oriented languages (and can be used to implement
higher-order functions).
class Animal {
def noise = "squeak!"
def muchNoise = noise + noise

}
class Dog extends Animal {
override def noise = "aw!"

}
d = new Dog
d.muchNoise

res0: String = aw!aw!

Compilation of muchNoise cannot make a direct call to method that returns "squeak!"
but must invoke whatever method is most specific to the dynamic type of the object
given by new declaration.
 virtual method table

https://en.wikipedia.org/wiki/Virtual_method_table


Dynamic Dispatch Implementation
type Animal = struct { vtable : FunPtrs[] }

def Animal_noise(this:Animal) = return "squeak!"
def Animal_muchNoise(this:Animal) =
(this -> vtable)[0](this) +
(this -> vtable)[0](this)

type Dog = struct { vtable : FunPtrs[] }

def Dog_noise(this:Dog) = return "aw!"

Animal_vtable[] = { Animal_noise, Animal_muchNoise }
Dog_vtable[] = { Dog_noise, Animal_muchNoise }

d = malloc(Dog)
d -> vtable = Dog_vtable
(d -> vtable)[1](d) // 1 is the index of muchNoise

Virtual methods calls have one extra indirection
(even more in case of multiple inheritance)



First-Class Functions as Objects: Capturing Vals
val f = {
val x = 42
((y:Int) => x + y) // Closure_1

}
f(20)

becomes:
abstract class Function[A-,B+] {
def apply(x:A): B

}
class Closure_1(x:Int) extends Function {
def apply(y: Int): Int = x + y

}
val f = {

val x = 42
new Closure_1(x)

}
f.apply(20)



Capturing Vars

val f = { // Block_2
var x = 42
((y:Int) => x + y; x++) // Closure_2

}
f(20) + f(0)

becomes:
class Block_2_Vars { var x: Int = _ }
class Closure_2(block: Block_2_Vars) extends Function {
def apply(y: Int): Int = { block.x + y; block.x++ }

}
val f = {

val block2 = new Block_2_Vars
block2.x = 42
new Closure_2(block2)

}
f.apply(20) + f.apply(0)



Lazy Values
Lazy values can avoid/postpone computation:
lazy val wikipediaSize = computeSize(wikipedia)
lazy val worldPop = computePopulation(world)
wikipediaSize / 1024

Simple implementation (for real one, see CS-302)
class Lazy[A](computation: () => A) {
var cached: A = _
var defined: Boolean = false
def force: A = {
if (!defined) {
cached = computation(())
defined= true

}
cached

}
}
val wikipediaSize = Lazy(() => computeSize(wikipedia))
val worldPop = Lazy(() => computePopulation(world))
wikipediaSize.force / 1024



Lazy Values as Default

Call by value breaks substitution principle, even for pure E,
{ val x = E; F}

may loop in some cases when replacing x
{ F[x:=E] }

would end up not touching E and thus terminate.

A more declarative approach is to say all val-s and parameters are lazy - approach
taken by Haskell. But accessing lazy values is expensive (even after they are evaluated)
One solution: strictness analysis that determines ahead of time that some parameter
is always accessed, so it can be passed by value.
I dual to initialization analysis: function parameter is strict if all branches use it
I need to define it for higher-order functions



Compiling Logic Programming
In lazy evaluation we do not know if we will use a value, but in logic programming
languages such as Prolog we do not even know which values are inputs and which ones
are outputs.

Execution is often using Warren Abstract Machine (WAM) that supports backtracking
and instructions for unification.

To make logic programs faster, there exist (type inference as well as) mode analysis
that computes functional dependencies saying that certain values can be computed as
function of others, and thus compiler can pre-generate functions that correspond to
every direction of relation.

Further reading:
I Constraint-Based Mode Analysis of Mercury
I An overview of Ciao and its design philosophy

https://en.wikipedia.org/wiki/Warren_Abstract_Machine
http://lara.epfl.ch/w/_media/cc09:modeanalysisoverton.pdf
https://doi.org/10.1017/S1471068411000457


Code Specialization
By partially evaluating program at compile time, we can specialize its parts and
generate more efficient code.

Such transformation can be done automatically or under user control using, for
example, staged computation, macros, templates.
def fold(l: List[A], b: B, f : (A,B) => B): B = l match {

case Nil => b
case x::xs => f(x, fold(xs,b,f))

}
fold(l, 0, _ + _)

⇓
def foldZeroPlus(l: List[A]): B = l match {

case Nil => 0
case x::xs => x + foldZeroPlus(xs) // no closure

}
foldZeroPlus(l)



Algebraic Transformations

Higher-order combinators such as map satisfy many laws that can be used for
optimization, including parallel execution.

Typically these laws hold only when functions are pure

list.map(f).map(g) == list.map(x => g(f(x)))

Type systems and program analyses for purity are an active areas of research.

If a language has mutable objects and allows their sharing, it is particularly difficult to
prove that a function behaves as pure: knowing if a modification is to auxiliary objects
or externally observable objects requires reasoning about possible heap configurations
(shape analysis, alias analysis).


