
Lecture 10: Type Inference

Type inference

Languages such as Haskell, ML, ocaml support inference of types in most cases

Using Amy syntax, with type inference we could write programs without type
annotations:
def message(s, verbose) = {

if (verbose > 1) { print(s) }
else { print(".") }

}

The system would infer types of parameters and result, and check that the program
type checks. If it is not possible to find types, the type checker will still complain.
I as concise code as in untyped language
I type inference still catches meaningless programs

Today we explain how to do such type inference, for simple types

Intuition and key ideas
def message(s, verbose) = {

if (verbose > 1) { print(s) }
else { print(".") }

}

> : Int × Int → Bool , verbose : τverbose , 1 : Int
(verbose > 1) : Bool

so τverbose = Int, for application of > to make sense.
print : String → Unit, s : τs

print(s) : Unit
so τs = String , for application of print to make sense.
Both if branches return Unit, and so should message
Strategy:

1. Use type variables (e.g. τverbose , τs) to denote unknown types
2. Use type checking rules to derive constraints among type variables (arguments

have expected types)
3. Use unification algorithm to solve constraints

Small language with tuples and functions
Types are:

1. primitive types: Int, Bool, String, Unit
2. type constructors:

I Pair[A,B] or (A,B) denotes set of pairs
I Function[A,B] or A⇒ B denotes functions from A to B

Abstract syntax of types:

t := Int | Bool | String | Unit | (t1, t2) | (t1 ⇒ t2)

Terms include pairs and anonymous functions (x denotes variables, c literals):

t := x | c | f (t1, . . . , tn) | if (t) t1 else t2 | (t1, t2) | (x ⇒ t)

Primitives P1,P2 for pair components, if t = (x , y) then P1(t) = x , P2(t) = y .
We write them as in Scala, t. 1 and t. 2
For values and types, (x , y , z) is shorthand for, say, (x , (y , z))

Type Rules

Rule for conditionals:

Γ ` b : Bool Γ ` t1 : τ Γ ` t2 : τ
Γ ` (if (b) t1 else t2) : τ

Rules for variables:
Γ(x) = τ

Γ ` x : τ
Rules for constants:

”...” : String true : Boolean false : Boolean . . .

Rules for Pairs

Γ ` t1 : τ1 Γ ` t2 : τ2
Γ ` (t1, t2) : (τ1, τ2)

If the first component t1 has type τ1 and the second component t2 has type τ2 then
the pair (t1, t2) has the type (τ1, τ2).

Γ ` t : (τ1, τ2)
Γ ` t. 1 : τ1

Γ ` t : (τ1, τ2)
Γ ` t. 2 : τ2

Functions of One argument

Γ ` f : τ ⇒ τ0 Γ ` t : τ
Γ ` f (t) : τ0

Why only one argument?
Note that τ can be a tuple (τ1, . . . , τn), so we can derive:

Γ ` t1 : τ1 . . . Γ ` tn : τn Γ ` f : (τ1, . . . , τn)⇒ τ0 Γ ` t : τ
Γ ` (t1, . . . , tn) : (τ1, . . . , τn) Γ ` f : (τ1, . . . , τn)⇒ τ

Γ ` f (t) : τ0

Functions of One argument

Γ ` f : τ ⇒ τ0 Γ ` t : τ
Γ ` f (t) : τ0

Why only one argument?

Note that τ can be a tuple (τ1, . . . , τn), so we can derive:

Γ ` t1 : τ1 . . . Γ ` tn : τn Γ ` f : (τ1, . . . , τn)⇒ τ0 Γ ` t : τ
Γ ` (t1, . . . , tn) : (τ1, . . . , τn) Γ ` f : (τ1, . . . , τn)⇒ τ

Γ ` f (t) : τ0

Functions of One argument

Γ ` f : τ ⇒ τ0 Γ ` t : τ
Γ ` f (t) : τ0

Why only one argument?
Note that τ can be a tuple (τ1, . . . , τn), so we can derive:

Γ ` t1 : τ1 . . . Γ ` tn : τn Γ ` f : (τ1, . . . , τn)⇒ τ0 Γ ` t : τ
Γ ` (t1, . . . , tn) : (τ1, . . . , τn) Γ ` f : (τ1, . . . , τn)⇒ τ

Γ ` f (t) : τ0

Rules for Anonymous Function

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 ⇒ τ2)

What does this rule say?

Anonymous function x ⇒ t that maps x to the value given by term t has a function
type.
The type of this function is τ1 ⇒ τ2, where τ1 is the type of x and τ2 is the type of t.
Inside t there may be uses of x , which has some type τ1. This is why Γ is extended
with binding of x to τ1 when type checking t.

Rules for Anonymous Function

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 ⇒ τ2)

What does this rule say?
Anonymous function x ⇒ t that maps x to the value given by term t has a function
type.

The type of this function is τ1 ⇒ τ2, where τ1 is the type of x and τ2 is the type of t.
Inside t there may be uses of x , which has some type τ1. This is why Γ is extended
with binding of x to τ1 when type checking t.

Rules for Anonymous Function

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 ⇒ τ2)

What does this rule say?
Anonymous function x ⇒ t that maps x to the value given by term t has a function
type.
The type of this function is τ1 ⇒ τ2, where τ1 is the type of x and τ2 is the type of t.

Inside t there may be uses of x , which has some type τ1. This is why Γ is extended
with binding of x to τ1 when type checking t.

Rules for Anonymous Function

Γ[x := τ1] ` t : τ2
Γ ` (x ⇒ t) : (τ1 ⇒ τ2)

What does this rule say?
Anonymous function x ⇒ t that maps x to the value given by term t has a function
type.
The type of this function is τ1 ⇒ τ2, where τ1 is the type of x and τ2 is the type of t.
Inside t there may be uses of x , which has some type τ1. This is why Γ is extended
with binding of x to τ1 when type checking t.

Example

def translatorFactory(dx, dy) = {
p ⇒ (p._1 + dx, p._2 + dy) // returns anonymous function

}
def upTranslator = translatorFactory(0, 100)
def test = upTranslator((3, 5)) // computes (3, 105)

Type inference can find types that correspond to this annotated program:
def translatorFactory(dx: Int, dy: Int): (Int,Int) ⇒ (Int,Int) = {

p ⇒ (p._1 + dx, p._2 + dy) }
def upTranslator : (Int,Int) ⇒ (Int,Int) = translatorFactory(0, 100)
def test: (Int,Int) = upTranslator((3, 5))

Are our inferred types correct?
def translatorFactory(dx: Int, dy: Int): (Int,Int) ⇒ (Int,Int) = {

p ⇒ (p._1 + dx, p._2 + dy) }
def upTranslator : (Int,Int) ⇒ (Int,Int) = translatorFactory(0, 100)
def test: (Int,Int) = upTranslator((3, 5))

Γ ` p ⇒ (p. 1 + dx , p. 2 + dy) : (Int, Int)⇒ (Int, Int)

From Type Checking to Type Inference

def translatorFactory(dx: Int, dy: Int): (Int,Int) ⇒ (Int,Int) = {
p ⇒ (p._1 + dx, p._2 + dy) }

def upTranslator : (Int,Int) ⇒ (Int,Int) = translatorFactory(0, 100)
def test: (Int,Int) = upTranslator((3, 5))

Example steps in type checking the body. Let Γ′ = Γ[p := (Int, Int)]

Γ′ ` p. 1 : Int Γ′ ` dx : Int
Γ′ ` (p. 1 + dx) : Int . . .

Γ′ ` (p. 1 + dx , p. 2 + dy) : (Int, Int)
Γ ` p ⇒ (p. 1 + dx , p. 2 + dy) : (Int, Int)⇒ (Int, Int)

How did type inference discover dx : Int? We construct the derivation tree keeping
type of dx symbolic until some derivation step tells us what it must be. Here, +
expects two integers in p. 1 + dx

Deriving Constraints in Type Inference
def translatorFactory(dx, dy) = {

p ⇒ (P1(p) + dx, P2(p) + dy)
}

Let Γ1 = Γ[p := τp] where τp is to be determined later

Γ1 ` p : τp τp = (τ3, τ4)
Γ1 ` p. 1 : τ3 Γ1 ` dx : τdx Γ1 ` + : (Int, Int)→ Int

Γ1 ` p. 1 + dx : τ1 τ3 = Int, τdx = Int, τ1 = Int
Γ1 ` (p. 1 + dx , p. 2 + dy) : τr τr = (τ1, τ2)

Γ ` (p ⇒ (p. 1 + dx , p. 2 + dy)) : τfun τfun = τp ⇒ τr

Analogously, for the second component of the pair, we derive τ2 = Int, τ4 = Int on
other branches of the derivation tree.
From these constraints it follows τp = (Int, Int), τr = (Int, Int) and

τfun = (Int, Int)⇒ (Int, Int)

Constraints

Introduce type variable for each tree node. Then collect these constraints:

tree node constraint
(f : τf)(t : τ) : τ0 τf = (τ ⇒ τ0)
((x : τx)⇒ (t : τt)) : τfun τfun = (τx ⇒ τt) (x , τx) added to Γ′ for t
(t1 : τ1, t2 : τ2) : τ τ = (τ1, τ2)
(t : τ). 1 : τ1 τ = (τ1, τ2) τ2 is a fresh type variable
(t : τ). 2 : τ2 τ = (τ1, τ2) τ1 is a fresh type variable
(if (b : τb) t1 : τ1 else t2 : τ2) : τ τ = τ1, τ = τ2, τb = Bool
x : τx Γ(x) = τx
false : τ τ = Bool
true : τ τ = Bool
k : τ τ = Int
”...” : τ τ = String

Summary of type inference

1. Introduce type variable for each tree node
2. For each tree node use type rules to derive constraints among the type variables
3. Solve the resulting set of equations on type variables

Solving equations on simple types: unification (as in Prolog)

Types in equations have the following syntax:

t := τ | Int | Bool | String | Unit | (t1, t2) | (t1 ⇒ t2)

We assume that
I primitive types are disjoint and distinct from pairs and functions
I pairs and functions are always distinct
I two pairs are equal iff their corresponding component types are equal
I two functions are equal iff their argument and result types are equal

Idea: eliminate variables, decompose pair and function equalities.
Algorithm works for any term algebra (algebra of syntactic terms)
I Pair[A,B] and Function[A,B] are two distinct binary term constructors
I Int, Bool, String are distinct nullary constructors

Unification Algorithm

Applies the following rules as long as they change equation set
Let x denote a type variable and T a type term
Orient: Replace T = x with x = T when τ is not a type variable
Delete useless: Remove x = x
Eliminate: Given x = T where T does not contain x , replace x with T in all
remaining equations
Occurs check: Given x = T where T contains x , report clash (no solutions)
Decompose pairs: Replace (T1,T2) = (T ′

1,T ′
2) with two equations T1 = T ′

1 and
T2 = T ′

2.
Decompose functions: Replace (T1 ⇒ T2) = (T ′

1 ⇒ T ′
2) with T1 = T ′

1 and T2 = T ′
2.

Decomposition clash (remaining cases): Given equality where two sides start with
different constructors report clash (no solution). Examples: (T1,T2) = (T ′

1 ⇒ T ′
2),

Int = (T1,T2), Int = Bool , (T1 ⇒ T2) = String

Properties of unification

Algorithm always terminates (running time almost linear given the right data
structures)

If it reports clash it means that equations have no solution (there exist no annotations
that make program type check)

Otherwise, the equations have one or more solutions. Note that a variable that appears
on left of equation does not appear on the right (else the eliminate rule would apply).
Call a variable that only appears on the right a parameter.
If there are no parameters, there is exactly one solution. Otherwise, for each
assignment of types to parameters we obtain a solution.
Moreover, all solutions are obtained this way. Therefore, the result of unification
algorithm describes all possible ways to assign simple types to the program.

Run the algorithm for this example

def rightNest(t) = {
(t._1._1, (t._1._2, t._2))

}
def test1 = rightNest(((1, 2), 3))

What happens in this case?

def rightNest(t) = {
(t._1._1, (t._1._2, t._2))

}
def test1 = rightNest(((1, 2), 3))
def test2 = rightNest((false , true), false)

Program fails to type check because the argument type of t becomes equal to both Int
and Bool, which is inconsistent.

More flexibility through generalization
def rightNest(t) = {

(t._1._1, (t._1._2, t._2))
}
def test1 = rightNest(((1, 2), 3))
def test2 = rightNest((false , true), false)

After completing the inference for rightNest, first generalize its free type variables into
a variable schema:

∀a, b, c. ((a, b), c))→ (a, (b, c))

Then, each time we use the function, replace quantified variables with fresh variables.
Use in test1:

((a1, b1), c1))→ (a1, (b1, c1))

a1 = Int, b1 = Int, c1 = Int
Use in test2:

((a2, b2), c2))→ (a2, (b2, c2))

a2 = Bool , b2 = Bool , c2 = Bool

More flexibility through generalization

def rightNest(t) = {
(t._1._1, (t._1._2, t._2))

}
def test1 = rightNest(((1, 2), 3))
def test2 = rightNest((false , true), false)

With this new approach, the program type checks and its types are inferred as follows:
def rightNest[A,B,C](t : ((A, B), C)) : (A, (B, C)) = {

(t._1._1, (t._1._2, t._2))
}

def test1 : (Int, (Int, Int)) =
rightNest[Int, Int, Int](((1, 2), 3))

def test2 : (Bool, (Bool, Bool))=
rightNest[Bool,Bool, Bool]((false , true), false)

More examples for type inference
def S(x, y, z) = (x(z))(y(z))

def Sb(x, y, z) = (x(z))(z(x))

def cm(f, g) = x => f(g(x))

def cr(f) = x => (y => f(x,y))

def uncr(f) =
p => (f(p._1))(p._2)

def pr(x, y) = c => (c(x))(y)

def c1(p) = p(x => (y => x))

def c2(p) = p(x => (y => y))

def e(x, y) = c1(pr(x,y))

Occurs check

Show what type inference does for expression f (f)

Let annotations be as follows:

(f : T1)(f : T2) : T3

For Γ(f) = Tf , we generate constraints:

T1 = Tf
T2 = Tf
T1 = (T2 ⇒ T3)

After eliminating T1 and T2 we obtain

Tf = (Tf ⇒ T3)

which fails occurs check and unification fails. The term does not type check.

Occurs check

Show what type inference does for expression f (f)
Let annotations be as follows:

(f : T1)(f : T2) : T3

For Γ(f) = Tf , we generate constraints:

T1 = Tf
T2 = Tf
T1 = (T2 ⇒ T3)

After eliminating T1 and T2 we obtain

Tf = (Tf ⇒ T3)

which fails occurs check and unification fails. The term does not type check.

Exercise

Let Γ = {(x ,Tx), (y : Ty), (z ,Tz)} where Tx ,Ty ,Tz are type variables
Apply type inference to expression x(z)(z(x))

