Code Generation: Introduction
Compiler (
scalac, gcc)

source code
(e.g. Scala, Java, C)

easy to write

i = 0

while (i < 10) {
 a[i] = 7*i+3
 i = i + 1
}

idea
data-flow
graphs

machine code
efficient to execute

i = 0

while (i < 10)

lexer

characters

words

trees

Parser

type

check

Optimizer

code gen

Parser

type

check

Optimizer

code gen

mov R1,#0
mov R2,#40
mov R3,#3
jmp +12
mov (a+R1),R3
add R1, R1, #4
add R3, R3, #7
cmp R1, R2
blt -16
What did (i<10) compile to?

gcc test.c -S

```
jmp .L2
.L3:  movl -8(%ebp), %eax
     movl %eax, 4(%esp)
     movl $.LC0, (%esp)
     call printf
     addl $1, -12(%ebp)
     movl -12(%ebp), %eax
     addl %eax, %eax
     addl -8(%ebp), %eax
     addl $1, %eax
     movl %eax, -8(%ebp)
.L2:  cmpl $9, -12(%ebp)
     jle .L3
```
while (i < 10) {
 System.out.println(j);
 i = i + 1;
 j = j + 2*i+1;
}
Java Virtual Machine

Use: `javac -g *.java` to compile

`javap -c -l ClassName` to explore

https://docs.oracle.com/javase/specs/jvms/se8/html/jvms-2.html#jvms-2.11
Your Compiler

Your Project

WebAssembly (WA) Bytecode

source code

Amy language

while (i < 10) {
 a[i] = 7*i+3
 i = i + 1
}

lexer

parser

type check

code gen

characters

words

trees

get_local 0
get_local 0
i64.const 1
i64.sub
call 0
i64.mul
WebAssembly

• Overview of bytecodes:
 http://webassembly.org/docs/semantics/

• Compiling from C:
 http://webassembly.org/getting-started/developers-guide/
 https://hacks.mozilla.org/2017/03/previewing-the-webassembly-explorer/

• Research paper and the talk:
 Bringing the Web up to Speed with WebAssembly
WebAssembly example

```cpp
int factorial(int n) {
    if (n == 0)
        return 1;
    else
        return n * factorial(n-1);
}
```

```webassembly
get_local 0  // n
i64.const 0  // 0
i64.eq      // n==0 ?
if i64
    i64.const 1  // 1
else
    get_local 0  //   n
    get_local 0  //   n
    i64.const 1  //   1
    i64.sub       // n-1
    call 0  // f(n-1)
    i64.mul        // n*f(n-1)
end
```

More at: https://mbebenita.github.io/WasmExplorer/
Stack Machine: High-Level Machine Code

Let us step through

Memory (for locals):

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top of stack</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Instruction sequence:

- `get_local 2`
- `i64.const 2`
- `get_local 1`
- `i64.mul`
- `i64.add`
- `i64.add`
- `set_local 2`
Operands are consumed from stack and put back onto stack

Instruction sequence:

get_local 2
i64.const 2
get_local 1
i64.mul
i64.add
i64.const 1
i64.add
set_local 2
Operands are consumed from stack and put back onto stack

memory:

```
0 1 2
3 8
```

Instruction sequence:

- `get_local 2`
- `i64.const 2`
- `get_local 1`
- `i64.mul`
- `i64.add`
- `i64.const 1`
- `i64.add`
- `set_local 2`
Operands are consumed from stack and put back onto stack

Instruction sequence:

```
get_local 2
i64.const 2
get_local 1
i64.mul
i64.add
i64.const 1
i64.add
set_local 2
```

Memory:

```
0 1 2
3 8
```
Operands are consumed from stack and put back onto stack.

Instruction sequence:
- `get_local 2`
- `i64.const 2`
- `get_local 1`
- `i64.mul`
- `i64.add`
- `i64.add`
- `set_local 2`
Operands are consumed from stack and put back onto stack

Instruction sequence:

```
get_local 2
i64.const 2
get_local 1
i64.mul
i64.add
i64.add
set_local 2
```
Operands are consumed from stack and put back onto stack

```
memory:
<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>
```

Instruction sequence:
```
get_local 2
i64.const 2
get_local 1
i64.mul
i64.add
i64.const 1
i64.add
set_local 2
```
Operands are consumed from stack and put back onto stack

Instruction sequence:

```
get_local 2
i64.const 2
get_local 1
i64.mul
i64.add
i64.const 1
i64.add
set_local 2
```
Operands are consumed from stack and put back onto stack

Instruction sequence:

```
get_local 2
i64.const 2
get_local 1
i64.mul
i64.add
i64.const 1
i64.add
set_local 2
```
Stack Machine Simulator

```javascript
var code : Array[Instruction]
var pc : Int  // program counter
var local : Array[Int]  // for local variables
var operand : Array[Int]  // operand stack
var top : Int

while (true) step

def step = code(pc) match {
  case Iadd() =>
    operand(top - 1) = operand(top - 1) + operand(top)
    top = top - 1  // two consumed, one produced
  case Imul() =>
    operand(top - 1) = operand(top - 1) * operand(top)
    top = top - 1  // two consumed, one produced
```

```
Stack Machine Simulator: Moving Data

case icontst(c) =>
    operand(top + 1) = c  // put given constant 'c' onto stack
    top = top + 1

case iletlocal(n) =>
    operand(top + 1) = local(n)  // from memory onto stack
    top = top + 1

case iletsetlocal(n) =>
    local(n) = operand(top)  // from stack into memory
    top = top - 1  // consumed
}

if (notJump(code(n)))
    pc = pc + 1  // by default go to next instructions

WebAssembly reference interpreter in ocaml:

https://github.com/WebAssembly/spec/tree/master/interpreter
Selected Instructions

Reading and writing locals (and parameters):
- **get_local**: read the current value of a local variable
- **set_local**: set the current value of a local variable
- **tee_local**: like set_local, but also returns the set value

Arithmetic operations (take args from stack, put result on stack):
- **i32.add**: sign-agnostic addition
- **i32.sub**: sign-agnostic subtraction
- **i32.mul**: sign-agnostic multiplication (lower 32-bits)
- **i32.div_s**: signed division (result is truncated toward zero)
- **i32.rem_s**: signed remainder (result has the sign of the dividend x in x%y)
- **i32.and**: sign-agnostic bitwise and
- **i32.or**: sign-agnostic bitwise inclusive or
- **i32.xor**: sign-agnostic bitwise exclusive or
Comparisons, stack, memory

i32.eq: sign-agnostic compare equal
i32.ne: sign-agnostic compare unequal
i32.lt_s: signed less than
i32.le_s: signed less than or equal
i32.gt_s: signed greater than
i32.ge_s: signed greater than or equal
i32.eqz: compare equal to zero (return 1 if operand is zero, 0 otherwise)

There are also: 64 bit integer operations i64._ and floating point f32._, f64._

drop: drop top of the stack

i32.const C: put a given constant C on the stack

Access to memory (given as one big array):

i32.load: get memory index from stack, load 4 bytes (little endian), put on stack
i32.store: get memory address and value, store value in memory as 4 bytes

Can also load/store small numbers by reading/writing fewer bytes, see
http://webassembly.org/docs/semantics/
Example: Area

```c
int fact(int a, int b, int c) {
 return ((c+a)*b + c*a) * 2;
}
```

```assembly
(module (type $type0 (func (param i32 i32 i32) (result i32)))

(table 0 anyfunc) (memory 1)
(export "memory" memory)
(export "fact" $func0)
(func $func0 (param $var0 i32)
 (param $var1 i32)
 (param $var2 i32) (result i32)
 get_local $var2
 get_local $var0
 i32.add
 get_local $var1
 i32.mul
 i32.add
 i32.add
 i32.const 1
 i32.shl // shift left, i.e. *2
))
```
Towards Compiling Expressions: Prefix, Infix, and Postfix Notation
Overview of Prefix, Infix, Postfix

Let $f$ be a binary operation, $e_1 e_2$ two expressions. We can denote application $f(e_1,e_2)$ as follows:

- in **prefix** notation $f e_1 e_2$
- in **infix** notation $e_1 f e_2$
- in **postfix** notation $e_1 e_2 f$

• Suppose that each operator (like $f$) has a known number of arguments. For nested expressions:
  - infix requires parentheses in general
  - prefix and postfix do not require any parentheses!
Expressions in Different Notation

For infix, assume * binds stronger than +
There is no need for priorities or parens in the other notations

<table>
<thead>
<tr>
<th>arg.list</th>
<th>+(x,y)</th>
<th>+(*(x,y),z)</th>
<th>+(x,*((y),z))</th>
<th>*(x,+(y,z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>prefix</td>
<td>+ x y</td>
<td>+ * x y z</td>
<td>+ x * y z</td>
<td>* x + y z</td>
</tr>
<tr>
<td>infix</td>
<td>x + y</td>
<td>x*y + z</td>
<td>x + y*z</td>
<td>x*(y + z)</td>
</tr>
<tr>
<td>postfix</td>
<td>x y +</td>
<td>x y * z +</td>
<td>x y z * +</td>
<td>x y z + *</td>
</tr>
</tbody>
</table>

Infix is the only problematic notation and leads to ambiguity
Why is it used in math? Ambiguity reminds us of algebraic laws:
\( x + y \) looks same from left and from right (commutative)
\( x + y + z \) parse trees mathematically equivalent (associative)
Convert into Prefix and Postfix

prefix

infix \( ( ( x + y ) + z ) + u \) \( x + ( y + ( z + u ) ) \)

postfix
draw the trees:

Terminology:

prefix = Polish notation
(attributed to Jan Lukasiewicz from Poland)

postfix = Reverse Polish notation (RPN)

Is the sequence of characters in postfix opposite to one in prefix if we have binary operations?

What if we have only unary operations?
# Compare Notation and Trees

<table>
<thead>
<tr>
<th></th>
<th>arg.list</th>
<th>prefix</th>
<th>infix</th>
<th>postfix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$+(x,y)$</td>
<td>$+\ x\ y$</td>
<td>$x + y$</td>
<td>$x y +$</td>
</tr>
<tr>
<td></td>
<td>$+(*(x,y),z))$</td>
<td>$+ * x y z$</td>
<td>$x* y + z$</td>
<td>$x y * z +$</td>
</tr>
<tr>
<td></td>
<td>$+(x,*(y,z))$</td>
<td>$+ x * y z$</td>
<td>$x + y*z$</td>
<td>$x y z * +$</td>
</tr>
<tr>
<td></td>
<td>$*(x,+(y,z))$</td>
<td>$* x + y z$</td>
<td>$x*(y + z)$</td>
<td>$x y z + *$</td>
</tr>
</tbody>
</table>

draw ASTs for each expression

How would you pretty print AST into a given form?
Simple Expressions and Tokens

sealed abstract class Expr

case class Var(varID: String) extends Expr

case class Plus(lhs: Expr, rhs: Expr) extends Expr

case class Times(lhs: Expr, rhs: Expr) extends Expr

sealed abstract class Token

case class ID(str: String) extends Token

case class Add extends Token

case class Mul extends Token

case class O extends Token  /// ( 

case class C extends Token  /// )
def prefix(e : Expr) : List[Token] = e match {
  case Var(id) => List(ID(id))
  case Plus(e1,e2) => List(Add()) ::: prefix(e1) ::: prefix(e2)
  case Times(e1,e2) => List(Mul()) ::: prefix(e1) ::: prefix(e2)
}

def infix(e : Expr) : List[Token] = e match {
  case Var(id) => List(ID(id))
  case Plus(e1,e2) => List(O())::: infix(e1) ::: List(Add()) ::: infix(e2) ::: List(C())
  case Times(e1,e2) => List(O())::: infix(e1) ::: List(Mul()) ::: infix(e2) ::: List(C())
}

def postfix(e : Expr) : List[Token] = e match {
  case Var(id) => List(ID(id))
  case Plus(e1,e2) => postfix(e1) ::: postfix(e2) ::: List(Add())
  case Times(e1,e2) => postfix(e1) ::: postfix(e2) ::: List(Mul())
}
LISP: Language with Prefix Notation

- 1958 – pioneering language
- Syntax was meant to be abstract syntax
- Treats all operators as user-defined ones, so syntax does not assume the number of arguments is known
  - use parantheses in prefix notation: write $f(x,y)$ as $(f \ x \ y)$

```lisp
(defun factorial (n)
 (if (<= n 1)
 1
 (* n (factorial (- n 1))))
)```
PostScript: Language using Postfix

• .ps are ASCII files given to PostScript-compliant printers
• Each file is a program whose execution prints the desired pages
• http://en.wikipedia.org/wiki/PostScript%20programming%20language

PostScript language tutorial and cookbook
Adobe Systems Incorporated
Reading, MA : Addison Wesley, 1985
ISBN 0-201-10179-3 (pbk.)
A PostScript Program

/inch {72 mul} def
/wedge
 { newpath
 0 0 moveto
 1 0 translate
 15 rotate
 0 15 sin translate
 0 0 15 sin -90 90 arc
 closepath
 } def
gsave
 3.75 inch 7.25 inch translate
 1 inch 1 inch scale
 wedge 0.02 setlinewidth stroke
 gsave
 4.25 inch 4.25 inch translate
 1.75 inch 1.75 inch scale
 0.02 setlinewidth
 1 1 12
 { 12 div setgray
 gsave
 wedge
 gsave fill grestore
 0 setgray stroke
 grestore
 30 rotate
 } for
 grestore
 showpage
 grestore
 gssave

Related: https://en.wikipedia.org/wiki/Concatenative_programming_language
If we send it to printer (or run GhostView viewer viewer gv) we get

4.25 inch 4.25 inch translate
1.75 inch 1.75 inch scale
0.02 setlinewidth
1 1 12

{ 12 div setgray
gsave
 wedge
gsave fill grestore
0 setgray stroke
grestore
30 rotate
} for
grestore
showpage
Why postfix? Can evaluate it using stack

```scala
def postEval(env : Map[String, Int], pexpr : Array[Token]) : Int = {
  // no recursion!
  var stack : Array[Int] = new Array[Int](512)
  var top : Int = 0;  var pos : Int = 0
  while (pos < pexpr.length) {
    pexpr(pos) match {
      case ID(v) =>
        top = top + 1
        stack(top) = env(v)
      case Add() =>
        stack(top - 1) = stack(top - 1) + stack(top)
        top = top - 1
      case Mul() =>
        stack(top - 1) = stack(top - 1) * stack(top)
        top = top - 1
    }
    pos = pos + 1
  }
  stack(top)
}
```

x -> 3, y -> 4, z -> 5
infix: \(x \times (y + z)\)
postfix: \(x \ y \ z + \ *

Run ‘postfix’ for this env
Evaluating Infix Needs Recursion

The recursive interpreter:

```scala
def infixEval(env : Map[String,Int], expr : Expr) : Int =
  expr match {
    case Var(id) => env(id)
    case Plus(e1,e2) => infix(env,e1) + infix(env,e2)
    case Times(e1,e2) => infix(env,e1) * infix(env,e2)
  }
```

Maximal stack depth in interpreter = expression height
Compiling Expressions

• Evaluating postfix expressions is like running a stack-based virtual machine on compiled code

• Compiling expressions for stack machine is like translating expressions into postfix form
Expression, Tree, Postfix, Code

infix: \(x*(y+z) \)
postfix: \(x\ y\ z\ +\ * \)
bytecode:

get_local 1 \(x \)
get_local 2 \(y \)
get_local 3 \(z \)
i32.add \(+ \)
i32.mul \(* \)
Show Tree, Postfix, Code

infix: \((x*y + y*z + x*z)*2\)

postfix:

bytecode:

tree:

“Printing” Trees into Bytecodes

To evaluate $e_1 * e_2$ interpreter
- evaluates e_1
- evaluates e_2
- combines the result using *

Compiler for $e_1 * e_2$ emits:
- code for e_1 that leaves result on the stack, followed by
- code for e_2 that leaves result on the stack, followed by
- arithmetic instruction that takes values from the stack and leaves the result on the stack

```python
def compile(e : Expr) : List[Bytecode] = e match {
  // ~ postfix printer
  case Var(id) => List(Igetlocal(slotFor(id))))
  case Plus(e1,e2) => compile(e1) ::: compile(e2) ::: List(Iadd())
  case Times(e1,e2) => compile(e1) ::: compile(e2) ::: List(Imul())
}
```
Local Variables

- Assigning indices (called slots) to local variables using function `slotOf : VarSymbol \rightarrow \{0,1,2,3,...\}

- How to compute the indices?
 - assign them in the order in which they appear in the tree

```scala
def compile(e : Expr) : List[Bytecode] = e match {
  case Var(id) => List(Igetlocal(slotFor(id)))
  ...
}
def compileStmt(s : Statmt) : List[Bytecode] = s match {
  // id=e
  case Assign(id,e) => compile(e) ::: List(Iset_local(slotFor(id)))
  ...
}
```
Compiler Correctness

If we execute the compiled code, the result is the same as running the interpreter.

\[
\text{exec}(\text{env}, \text{compile}(\text{expr})) = \text{interpret}(\text{env}, \text{expr})
\]

interpret : Env x Expr -> Int
compile : Expr -> List[Bytecode]
exec : Env x List[Bytecode] -> Int

Assume 'env' in both cases maps var names to values.

Can prove correctness of entire compiler:

CompCert - A C Compiler whose Correctness has been Formally Verified

CakeML project: https://cakeml.org/
A simple proof with two quantifiers

A simple case of proof for (non-negative int y,x)
\[\forall y \forall x \ P(x,y) \]
is: let y be arbitrary, and then fix y throughout the proof.
Suppose that we prove
\[\forall x \ P(x,y) \]
by induction. We end up proving
\[P(0, y) \quad \text{for some arbitrary y} \]
\[P(x,y) \text{ implies } P(x+1,y) \quad \text{for arbitrary } x,y \]
Induction with Quantified Hypothesis

Prove \(P \) holds for all non-negative integers \(x, y \):
\[
\forall x \ \forall y \ \ P(x, y) \quad \text{i.e.} \quad \forall x \ \ Q(x)
\]
where \(Q(x) \) denotes \(\forall y \ P(x, y) \)

Induction on \(x \) means we need to prove:
1. \(Q(0) \) that is, \(\forall y \ P(0, y) \)
2. \(Q(x) \) implies \(Q(x+1) \)
 If \(\forall y_1 \ P(x, y_1) \) then \(\forall y_2 \ P(x+1, y_2) \) \(x, y_2 \text{ arbit.} \)

We can instantiate \(\forall y_1 \ P(x, y_1) \) multiple times when proving that, for any \(y_2 \), \(P(x, y_2) \) holds

One can instantiate \(y_1 \) with \(y_2 \) but not only
\[
\text{exec}(\text{env}, \text{compile}(\text{expr})) == \text{interpret}(\text{env}, \text{expr})
\]

Attempted proof by induction:
\[
\text{exec}(\text{env}, \text{compile}(\text{Times}(e1, e2)))) == \\
\text{exec}(\text{env}, \text{compile}(e1) ::: \text{compile}(e2) ::: \text{List}(\`\star\`))
\]

We need to know something about behavior of intermediate executions.

exec : Env x List[Bytecode] -> Int
run : Env x List[Bytecode] x List[Int] -> List[Int]

// stack as argument and result
\[
\text{exec}(\text{env}, \text{bcodes}) == \text{run}(\text{env}, \text{bcodes}, \text{List}()).\text{head}
\]
run(env, bcodes, stack) = newStack

Executing sequence of instructions

\[
\text{run} : \text{Env} \times \text{List[Bytecode]} \times \text{List[Int]} \rightarrow \text{List[Int]}
\]

Stack grows to the right, top of the stack is last element
Byte codes are consumed from left

Definition of run is such that

- \(\text{run (env, `*` :: L, S ::: List(x1, x2))} = \text{run(env,L, S:::List(x1*x2))}\)
- \(\text{run (env, `+` :: L, S ::: List(x1, x2))} = \text{run(env,L, S:::List(x1+x2))}\)
- \(\text{run(env,ILoad(n) :: L, S)} = \text{run(env,L, S:::List(env(n)))}\)

By induction one shows:
- \(\text{run (env,L1 ::: L2,S)} = \text{run(env,L2, run(env,L1,S))}\)

execute instructions \(L1\), then execute \(L2\) on the result
New correctness condition

exec : Env x List[Bytecode] -> Int
run : Env x List[Bytecode] x List[Int] -> List[Int]

Old condition:
exec(env, compile(expr)) == interpret(env, expr)

New condition:
run(env, compile(expr), S) == S:::List(interpret(env, expr))

shorthands:
env – T, compile – C, interpret – I, List(x) - [x]
∀e ∀S run(T,C(e),S) == S:::[I(T,e)]
By induction on e,
\[\forall S \ \text{run}(T, C(e), S) == S:::[l(T,e)] \]

One case (multiplication):

\[
\text{run}(T, C(\text{Times}(e_1, e_2)), S) == \\
\text{run}(T, C(e_1):::C(e_2):::``\ast``,:), S) == \\
\text{run}(T,``\ast``,:, \text{run}(T, C(e_2), \text{run}(T, C(e_1), S))) == \\
\text{run}(T,``\ast``,:, \text{run}(T, C(e_2), S:::[l(T,e_1)]) == (\forall S \ !) \\
\text{run}(T,``\ast``,:, S:::[l(T,e_1)]:::[l(T,e_2)]) == \\
S:::[l(T,e_1) \ast l(T,e_2)] == \\
S:::[l(T,\text{Times}(e_1,e_2))]}
\]
Shorthand Notation for Translation

\[
\begin{align*}
[e_1 + e_2] &= [e_1] + [e_2] \quad \text{add} \\
[e_1 * e_2] &= [e_1] \cdot [e_2] \quad \text{mul}
\end{align*}
\]
Code Generation for Control Structures
Sequential Composition

How to compile statement sequence?

\[
\text{s}_1; \text{s}_2; \ldots; \text{s}_N
\]

- Concatenate byte codes for each statement!

```python
def compileStmt(e : Stmt) : List[Bytecode] = e match {
    ...
    case Sequence(sts) =>
        for { st <- sts; bcode <- compileStmt(st) }
        yield bcode
}
```

i.e.

\[
\text{sts flatMap compileStmt}
\]

that is:

\[
(\text{sts map compileStmt}) \ flatten
\]
Compiling Control: Example

```c
int count(int counter, int to, int step) {
    int sum = 0;
    do {
        counter = counter + step;
        sum = sum + counter;
    } while (counter < to);
    return sum; }
```

We need to see how to:
- translate boolean expressions
- generate jumps for control
Representing Booleans

“All comparison operators yield 32-bit integer results with 1 representing true and 0 representing false.” — WebAssembly spec

Our generated code uses 32 bit int to represent boolean values in: local variables, parameters, and intermediate stack values.

1, representing true
0, representing false

i32.eq: sign-agnostic compare equal
i32.ne: sign-agnostic compare unequal
i32.lt_s: signed less than
i32.le_s: signed less than or equal
i32.gt_s: signed greater than
i32.ge_s: signed greater than or equal
i32.eqz: compare equal to zero (return 1 if operand is zero, 0 otherwise) // not
Truth Values for Relations: Example

```c
int test(int x, int y){
    return (x < y);
}
```

```python
(func $func0
    (param $var0 i32)
    (param $var1 i32)
    (result i32)

    get_local $var0
    get_local $var1
    i32.lt_s
}
```
int fun(int x, int y){
 int res = 0;
 if (x < y) {
 res = (y / x);
 } else res = (x / y);
 return res+x+y;
}
Main Instructions for Labels

• **block**: the beginning of a block construct, a sequence of instructions with a label at the end
• **loop**: a block with a label at the beginning which may be used to form loops
• **br**: branch to a given label in an enclosing construct
• **br_if**: conditionally branch to a given label in an enclosing construct
• **return**: return zero or more values from this function
• **end**: an instruction that marks the end of a block, loop, if, or function
Compiling If Statement

Notation for compilation:

\[
[\text{if (cond) tStmt else eStmt }] = \\
\text{block } \text{nAfter block } \text{nElse} \\
[\text{!cond}] \\
\text{bf_if } \text{nElse} \\
[\text{tStmt}] \\
\text{br } \text{nAfter} \\
\text{end } \text{nElse:} \\
[\text{eStmt}] \\
\text{end } \text{nAfter:}
\]

\[
\text{block } \text{label1 block } \text{label0} \\
(\text{negated condition code}) \\
\text{br_if } \text{label0} \quad // \text{to else branch} \\
(\text{true case code}) \\
\text{br } \text{label1} \quad // \text{done with if} \\
\text{end } \text{label0} \quad // \text{else branch} \\
(\text{false case code}) \\
\text{end } \text{label1} \quad // \text{end of if}
\]

Is there an alternative without negating the condition?
How to introduce labels

• For forward jumps to $label: use
 block $label
 ...
 end $label

• For backward jumps to $label: use
 loop $label
 ...
 end $label