Follow sets. LL(1) Parsing Table
Exercise Introducing Follow Sets

Compute nullable, first for this grammar:

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it behaves on this input:

beginof myPrettyCode
 x = u;
 y = v;
myPrettyCode ends
How does a recursive descent parser look like?

```python
def stmtList =
    if (???) {}  # what should the condition be?
    else { stmt; stmtList }

def stmt =
    if (lex.token == ID) assign
    else if (lex.token == beginof) block
    else error("Syntax error: expected ID or beginof")
...

def block =
    { skip(beginof); skip(ID); stmtList; skip(ID); skip(ends) }
```
Problem Identified

stmtList ::= ε | stmt stmtList
stmt ::= assign | block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Problem parsing stmtList:
- ID could start alternative stmt stmtList
- ID could follow stmt, so we may wish to parse ε that is, do nothing and return

• For nullable non-terminals, we must also compute what follows them
LL(1) Grammar - good for building recursive descent parsers

• Grammar is LL(1) if for each nonterminal X
 - first sets of different alternatives of X are disjoint
 - if nullable(X), first(X) must be disjoint from follow(X)
 and only one alternative of X may be nullable

• For each LL(1) grammar we can build recursive-descent parser

• Each LL(1) grammar is unambiguous

• If a grammar is not LL(1), we can sometimes transform it into equivalent LL(1) grammar
Computing if a token can follow

\[
\text{first}(B_1 \ldots B_p) = \{a \in \Sigma \mid B_1 \ldots B_p \Rightarrow \ldots \Rightarrow aw\}
\]

\[
\text{follow}(X) = \{a \in \Sigma \mid S \Rightarrow \ldots \Rightarrow \ldots Xa\ldots\}
\]

There exists a derivation from the start symbol that produces a sequence of terminals and nonterminals of the form \(\ldots Xa\ldots \) (the token \(a \) follows the non-terminal \(X \))
Rule for Computing Follow

Given \(X ::= YZ \) (for reachable \(X \))
then \(\text{first}(Z) \subseteq \text{follow}(Y) \)
and \(\text{follow}(X) \subseteq \text{follow}(Z) \)

now take care of nullable ones as well:

For each rule \(X ::= Y_1 \ldots Y_p \ldots Y_q \ldots Y_r \)
\(\text{follow}(Y_p) \) should contain:

- \(\text{first}(Y_{p+1}Y_{p+2}\ldots Y_r) \)
- also \(\text{follow}(X) \) if \(\text{nullable}(Y_{p+1}Y_{p+2}Y_r) \)
Compute nullable, first, follow

stmtList ::= \(\varepsilon \) \mid stmt \ stmtList
stmt ::= assign \mid block
assign ::= ID = ID ;
block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?
The grammar is not LL(1) because we have
• nullable(stmtList)
• first(stmt) ∩ follow(stmtList) = \{ID\}

• If a recursive-descent parser sees ID, it does not know if it should
 - finish parsing stmtList or
 - parse another stmt
Table for LL(1) Parser: Example

S ::= B EOF
 (1)

B ::= ε | B (B)
 (1) (2)

nullable: B
first(S) = { (, EOF }
follow(S) = {}
first(B) = { (}
follow(B) = {) }, (, EOF }

Parsing table:

<table>
<thead>
<tr>
<th></th>
<th>EOF</th>
<th>(</th>
<th>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>{1}</td>
<td>{1}</td>
<td>{}</td>
</tr>
<tr>
<td>B</td>
<td>{1}</td>
<td>{1,2}</td>
<td>{1}</td>
</tr>
</tbody>
</table>

easy entry: when parsing S, if we see), report error

parse conflict - choice ambiguity: grammar not LL(1)
1 is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))
Table for LL(1) Parsing

Tells which alternative to take, given current token:
choice : Nonterminal x Token -> Set[Int]

\[
A ::= \begin{cases}
(1) & B_1 \ldots B_p \\
| & (2) C_1 \ldots C_q \\
| & (3) D_1 \ldots D_r
\end{cases}
\]

For example, when parsing A and seeing token \(t \)

- \(\text{choice}(A,t) = \{2\} \) means: parse alternative 2 \((C_1 \ldots C_q)\)
- \(\text{choice}(A,t) = \{3\} \) means: parse alternative 3 \((D_1 \ldots D_r)\)
- \(\text{choice}(A,t) = \{\} \) means: report syntax error
- \(\text{choice}(A,t) = \{2,3\} \) : not LL(1) grammar

\[
\text{if } t \in \text{first}(C_1 \ldots C_q) \text{ add } 2 \text{ to } \text{choice}(A,t)
\]

\[
\text{if } t \in \text{follow}(A) \text{ add } K \text{ to } \text{choice}(A,t) \text{ where } K \text{ is nullable}
\]
General Idea when parsing nullable(A)

\[
A ::= B_1 \ldots B_p \\
| C_1 \ldots C_q \\
| D_1 \ldots D_r
\]

\[
def A =
\begin{cases}
B_1 \ldots B_p & \text{if (token } \in \text{T1)} \\
C_1 \ldots C_q & \text{else if (token } \in \text{T2 U T_F)} \\
D_1 \ldots D_r & \text{else if (token } \in \text{T3)} \\
\end{cases} \\
// \text{no else error, just return}
\]

where:

\[
T1 = \text{first}(B_1 \ldots B_p) \\
T2 = \text{first}(C_1 \ldots C_q) \\
T3 = \text{first}(D_1 \ldots D_r) \\
T_F = \text{follow}(A)
\]

Only one of the alternatives can be nullable (here: 2nd)
T1, T2, T3, T_F should be pairwise disjoint sets of tokens.
Algorithm for parsing arbitrary grammars
Parse trees, syntax trees
Ambiguity and priorities
Chomsky’s Classification of Grammars

On Certain Formal Properties of Grammars
(N. Chomsky, INFORMATION AND CONTROL 9., 137-167 (1959)

type 0: arbitrary **string-rewrite rules**
equivalent to Turing machines!

\[e \ X \ b =\Rightarrow e \ X \quad e \ X =\Rightarrow Y \]

type 1: context sensitive, RHS always larger
O(n)-space Turing machines

\[a \ X \ b =\Rightarrow a \ c \ X \ b \]

type 2: context free - one LHS nonterminal

type 3: regular grammars (regular languages)
Decidable even for type 1 grammars,
(by eliminating epsilons - Chomsky 1959)

We choose $O(n^3)$ CYK algorithm - simple

Better complexity possible:

General Context-Free Recognition in Less than Cubic Time, JOURNAL OF COMPUTER AND SYSTEM SCIENCES 10, 308--315 (1975)

- problem reduced to matrix multiplication - n^k for k between 2 and 3

More practical algorithms known:

can be adapted so that it automatically works in quadratic or linear time for better-behaved grammars
CYK Parsing Algorithm

CYK Algorithm Can Handle Ambiguity
Why Parse General Grammars

• General grammars can be ambiguous: for some strings, there are multiple parser trees
• Can be impossible to make grammar unambiguous
• Some languages are more complex than simple programming languages
 - mathematical formulas:
 \[x = y \land z \quad ? \quad (x=y) \land z \quad x = (y \land z) \]
 - natural language:
 \textit{I saw the man with the telescope.}
 - future programming languages
I saw the man with the telescope.

I saw the man with the telescope.
Ambiguity 2

Time flies like an arrow.

Indeed, time passes by quickly.

Those special “time flies” have an “arrow” as their favorite food.

You should regularly measure how fast the flies are flying, using a process that is much like an arrow.

...
Two Steps in the Algorithm

1) Transform grammar to normal form called Chomsky Normal Form

2) Parse input using transformed grammar
 dynamic programming algorithm

 “a method for solving complex problems by breaking them down into simpler steps. It is applicable to problems exhibiting the properties of overlapping subproblems”
Dynamic Programming to Parse Input

Assume Chomsky Normal Form, 3 types of rules:

- $S' \rightarrow \varepsilon \mid S$ (only for the start non-terminal)
- $N_i \rightarrow t$ (names for terminals)
- $N_i \rightarrow N_j \cdot N_k$ (just 2 non-terminals on RHS)

Decomposing long input:

find all ways to parse substrings of length 1,2,3,...
Balanced Parentheses Grammar

Original grammar G

\[B \rightarrow \varepsilon \mid BB \mid (B) \]

Modified grammar in Chomsky Normal Form:

\[
\begin{align*}
B1 &\rightarrow \varepsilon \mid BB \mid OM \mid OC \\
B &\rightarrow BB \mid OM \mid OC \\
M &\rightarrow BC \\
O &\rightarrow '(' \\
C &\rightarrow ')' \\
\end{align*}
\]

Terminals: ()

Nonterminals: B, B1, O, C, M, B
Parsing an Input

B1 → ε | B B | O M | O C
B → B B | O M | O C
M → B C
O → '('
C → ')'

O O C O C O C C1
2
3
4
5
6
(() () ())
1 2 3 4 5 6 8 9
Algorithm Idea

w_{pq} – substring from p to q

d_{pq} – all non-terminals that could expand to w_{pq}

Initially d_{pp} has $N_{w(p,p)}$

Key step of the algorithm:

If $X \rightarrow YZ$ is a rule,
 Y is in d_{pr}, and
 Z is in $d_{(r+1)q}$
then put X into d_{pq}
(p <= r < q),
in increasing value of (q-p)
Algorithm

INPUT: grammar G in Chomsky normal form
word w to parse using G

OUTPUT: true iff (w in L(G))

N = |w|

var d : Array[N][N]

for p = 1 to N {
 d(p)(p) = {X | G contains X→w(p)}
 for q in {p + 1 .. N} d(p)(q) = {}
}

for k = 2 to N // substring length
 for p = 0 to N-k // initial position
 for j = 1 to k-1 // length of first half
 val r = p+j-1; val q = p+k-1;
 for (X ::= Y Z) in G
 if Y in d(p)(r) and Z in d(r+1)(q)
 d(p)(q) = d(p)(q) union {X}

return S in d(0)(N-1)

What is the running
time as a function of
grammar size and the
size of input?

O()
Number of Parse Trees

Let w denote word (())()
- it has two parse trees

Give a lower bound on number of parse trees of the word w^n (n is a positive integer)

w^5 is the word
(())() (())() (())() (())() (())()

CYK represents all parse trees compactly
- can re-run algorithm to extract first parse tree, or enumerate parse trees one by one