Compiling Loops
Register Machines



Translating While Statement

Consider translation of the while statement, which gets 'nextLabel’
destination, specifying where to jump when exiting the loop.

We assume that the instructions emitted are inside the block that
introduced nextlLabel.

What is the translation schema?

while nextLabel =



Translating While Statement

Consider translation of the while statement, which gets 'nextLabel’
destination, specifying where to jump when exiting the loop.

We assume that the instructions emitted are inside the block that
introduced nextlLabel.

What is the translation schema?

while nextLabel =
loop startLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel

br startLabel
end



break Statement

In many languages, a break statement can be used to exit from the
loop. For example, it is possible to write code such as this:

while (condl) {
codel
if (cond2) break;
code?2

}

Loop executes codel and checks the condition cond2. If condition
holds, it exists. Otherwise, it continues and executes code2 and
then goes to the beginning of the loop, repeating the process.

Give translation scheme for this loop construct and explain how
the translation of other constructs needs to change.



break Statement - Propagating Exit Label

For a break statement to know where to jump, it needs to be
given a label indicating the exit of the loop. When we translate a
statement (such as i) potentially containing break, the
translation of this statement needs both the parameter to pass on
to break as well as the parameter to jump to during normal
execution. Therefore, each statement needs two destination
parameters: the 'nextLabel’ and the 'loopExit’ label. For example,

if else nextlL loopExitL =



break Statement - Propagating Exit Label

For a break statement to know where to jump, it needs to be
given a label indicating the exit of the loop. When we translate a
statement (such as i) potentially containing break, the
translation of this statement needs both the parameter to pass on
to break as well as the parameter to jump to during normal
execution. Therefore, each statement needs two destination
parameters: the 'nextLabel’ and the 'loopExit’ label. For example,

if else nextlL loopExitL =
block elselL

block thenL

branch(cond, thenL, elsel)
end // thenL
nextL loopExitL
end // elsel
nextL loopExitL



break Statement - Using and Setting Labels

Translating break:

break | nextLabel loopExitLabel =



break Statement - Using and Setting Labels

Translating break:

break | nextLabel loopExitLabel =
br loopExitLabel



break Statement - Using and Setting Labels

Translating break:

break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

while nextLabel loopExitLabel =



break Statement - Using and Setting Labels

Translating break:

break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

while nextLabel loopExitLabel =
loop startlLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel



break Statement - Using and Setting Labels

Translating break:

break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

while nextLabel loopExitLabel =
loop startlLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel
startLabel



break Statement - Using and Setting Labels

Translating break:

break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

while nextLabel loopExitLabel =
loop startlLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel
startLabel nextLabel
end



break Statement - Using and Setting Labels

Translating break:

break | nextLabel loopExitLabel =
br loopExitLabel

Translating while:

while nextLabel loopExitLabel =
loop startlLabel
block bodylLabel
branch(cond, bodylLabel, nextLabel)
end // bodylLabel
startLabel nextLabel
end

What if we want to have continue that goes to beginning of the
loop?



Loops with break and continue

Translating break:

break | nextL loopExitL loopStartL =
br loopExitL

Translating continue:

continue | nextL loopExitL loopStartL =
br loopStartL

Translating while:

while nextlL loopExitL loopStartL =
loop startlLabel
block bodylLabel
branch(cond, bodylLabel, nextL)
end // bodylLabel
startLabel nextL startlLabel
end

Explain difference between labels lToopStartL and startLabel



