
Abstract Interpretation

Lattice

Partial order: binary relation  (subset of some D2)
which is

– reflexive: x  x

– anti-symmetric: xy /\ yx -> x=y

– transitive: xy /\ yz -> xz

Lattice is a partial order in which every
two-element set has least among its upper
bounds and greatest among its lower bounds
• Lemma: if (D, ) is lattice and D is finite,

then lub and glb exist for every finite set

Graphs and Partial Orders

• If the domain is finite, then partial order can be
represented by directed graphs
– if x  y then draw edge from x to y

• For partial order, no need to draw x  z if
x  y and y  z. So we only draw non-transitive
edges

• Also, because always x  x , we do not draw those
self loops

• Note that the resulting graph is acyclic: if we had
a cycle, the elements must to be equal

Domain of Intervals [a,b] where
a,b{-M,-127,0,127,M-1}

Defining Abstract Interpretation

Abstract Domain D describing which information
to compute – this is often a lattice

– inferred types for each variable: x:T1, y:T2

– interval for each variable x:[a,b], y:[a’,b’]

Transfer Functions, [[st]] for each statement st,
how this statement affects the facts

– Example:

For now, we consider
arbitrary integer bounds for intervals

• Thus, we work with BigInt-s
• Often we must analyze machine integers

– need to correctly represent (and/or warn about) overflows
and underflows

– fundamentally same approach as for unbounded integers

• For efficiency, many analysis do not consider arbitrary
intervals, but only a subset of them W

• We consider as the domain
– empty set (denoted  , pronounced “bottom”)
– all intervals [a,b] where a,b are integers and a ≤ b, or

where we allow a= -∞ and/or b = ∞
– set of all integers [-∞ ,∞] is denoted T , pronounced “top”

Find Transfer Function: Plus

If

and we execute x= x+y

then

Suppose we have only two integer variables: x,y

So we can let

a’= a+c b’ = b+d
c’=c d’ = d

Find Transfer Function: Minus

If

and we execute y= x-y

then

Suppose we have only two integer variables: x,y

So we can let

a’= a b’ = b
c’= a - d d’ = b - c

Transfer Functions for Tests

if (x > 1) {

y = 1 / x
} else {

y = 42
}

Tests e.g. [x>1] come from translating if,while into

CFG

Joining Data-Flow Facts

if (x > 0) {

y = x + 100

} else {

y = -x – 50

}

join

Handling Loops: Iterate Until Stabilizes

x = 1

while (x < 10) {

x = x + 2

}

Analysis Algorithm

var facts : Map[Node,Domain] = Map.withDefault(empty)
facts(entry) = initialValues

while (there was change)
pick edge (v1,statmt,v2) from CFG

such that facts(v1) has changed
facts(v2)=facts(v2) join transferFun(statmt, facts(v1))

}

Order does not matter for the
end result, as long as we do not
permanently neglect any edge
whose source was changed.

Work List Version

var facts : Map[Node,Domain] = Map.withDefault(empty)
var worklist : Queue[Node] = empty
def assign(v1:Node,d:Domain) = if (facts(v1)!=d) {
facts(v1)=d
for (stmt,v2) <- outEdges(v1) { worklist.add(v2) }

}
assign(entry, initialValues)
while (!worklist.isEmpty) {

var v2 = worklist.getAndRemoveFirst
update = facts(v2)
for (v1,stmt) <- inEdges(v2)

{ update = update join transferFun(facts(v1),stmt) }
assign(v2, update)

}

Exercise: Run range analysis,
prove that error is unreachable

int M = 16;
int[M] a;

x := 0;

while (x < 10) {

x := x + 3;

}

if (x >= 0) {

if (x <= 15)

a[x]=7;

else

error;

} else {

error;
}

checks array accesses

Range analysis results
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

x := x + 3;

}

if (x >= 0) {

if (x <= 15)

a[x]=7;

else

error;

} else {

error;
}

checks array accesses

Simplified Conditions
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

x := x + 3;

}

if (x >= 0) {

if (x <= 15)

a[x]=7;

else

error;

} else {

error;
}

checks array accesses

Remove Trivial Edges, Unreachable Nodes
int M = 16;
int[M] a;

x := 0;

while (x < 10) {

x := x + 3;

}

if (x >= 0) {

if (x <= 15)

a[x]=7;

else

error;

} else {

error;
}

checks array accesses

Benefits:

- faster execution (no

checks)

- program cannot crash

with error

Constant Propagation Domain

Domain values D are:

– intervals [a,a], denoted simply ‘a’

– empty set, denoted  and set of all integers T

Formally, if Z denotes integers, then

D = {,T} U { a | aZ}
D is an infinite set

T



10-1-2 2… …

Constant Propagation Transfer Functions

x = y + z

For each variable (x,y,z) and
each CFG node (program point)
we store:  , a constant, or T

abstract class Element

case class Top extends Element

case class Bot extends Element

case class Const(v:Int) extends Element

var facts : Map[Nodes,Map[VarNames,Element]]

what executes during analysis of x=y+z:

oldY = facts(v1)("y")

oldZ = facts(v1)("z")

newX = tableForPlus(oldY, oldZ)

facts(v2) = facts(v2) join facts(v1).updated("x", newX)

def tableForPlus(y:Element, z:Element)

= (x,y) match {

case (Const(cy),Const(cz)) =>

Const(cy+cz)

case (Bot,_) => Bot

case (_,Bot) => Bot

case (Top,Const(cz)) => Top

case (Const(cy),Top) => Top

}

table for +:

Run Constant Propagation

x = 1

while (x < n) {
x = x + 2

}

n = 1000

What is the number of updates?

x = 1

n = readInt()

while (x < n) {

x = x + 2

}

Observe

• Range analysis with end points
W = {-128, 0, 127} has a finite domain

• Constant propagation has infinite domain
(for every integer constant, one element)

• Yet, constant propagation finishes sooner!

– it is not about the size of the domain

– it is about the height

Height of Lattice: Length of Max. Chain

∞

∞

∞ ∞

∞

∞
∞ ∞T

T



10-1-2 2

height=2

size =∞

height=5

size=14

… …

