Lecture 9
 How to make a sound type system

Why types are good

Prevent errors: many simple errors caught by types
Ensure memory safety or other desired properties
Document the program (purpose of parameters)
Make it easier to change
Make compilation more efficient: remove checks, specialize

An unsound (broken) type system

A type system that aims to ensure some property but, in fact, fails.

For example: suppose we have a system that aims to ensure that if parameter is of type Int, then it is only invoked with values of type Int. But we find a (tricky) program that passes the type checker but ends up invoking the function with the reference to a string. This is unsoundness.
Sometimes unsoundness is (somewhat) intentional compromise:

- type casts in C
- covariance for function arguments and arrays

Sometimes unintentional (unsoundness type system bugs)

Goal today

Define precisely a small language:

- its abstract syntax (as certain math expressions)
- its operational semantics (interpreter written in math)
- its type rules

Show that our type system prevents certain kinds of errors

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \quad \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \quad \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?

$$
r=\{(x, y) \mid x=0 \vee y=0\} ?
$$

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?
$-r=\{(x, y) \mid x=0 \vee y=0\}$? No

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?

- $r=\{(x, y) \mid x=0 \vee y=0\}$? No
- $r=\{(x, y) \mid x \leq 0 \wedge 0 \leq y\}$?

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?

- $r=\{(x, y) \mid x=0 \vee y=0\}$? No
- $r=\{(x, y) \mid x \leq 0 \wedge 0 \leq y\}$? No

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?

- $r=\{(x, y) \mid x=0 \vee y=0\}$? No
- $r=\{(x, y) \mid x \leq 0 \wedge 0 \leq y\} ?$? No
- $r=\mathbb{Z} \times \mathbb{Z}$?

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?

- $r=\{(x, y) \mid x=0 \vee y=0\}$? No
- $r=\{(x, y) \mid x \leq 0 \wedge 0 \leq y\}$? No
- $r=\mathbb{Z} \times \mathbb{Z}$? Yes

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \quad \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?

- $r=\{(x, y) \mid x=0 \vee y=0\}$? No
- $r=\{(x, y) \mid x \leq 0 \wedge 0 \leq y\}$? No
- $r=\mathbb{Z} \times \mathbb{Z}$? Yes

What is the smallest relation (wrt. \subseteq)?

Inductively defined relation: example

Define relation $r \subseteq \mathbb{Z} \times \mathbb{Z}$ using these inductive rules.

$$
\begin{gathered}
\overline{(0,0) \in r} \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Which relations satisfy these rules?

- $r=\{(x, y) \mid x=0 \vee y=0\}$? No
- $r=\{(x, y) \mid x \leq 0 \wedge 0 \leq y\}$? No
- $r=\mathbb{Z} \times \mathbb{Z}$? Yes

What is the smallest relation (wrt. \subseteq)? $r=\{(x, y) \mid x \leq y\}$

Example derivation of $(-3,-1) \in r$

$\frac{(0,0) \in r}{\frac{(0,1) \in r}{(0,2) \in r}} \frac{\frac{(-1,1) \in r}{(-2,0) \in r}}{(-3,-1) \in r}$

$$
\begin{gathered}
\overline{(0,0) \in r} \text { (zero) } \\
\frac{(x, y) \in r}{(x, y+1) \in r} \text { (increase right) } \\
\frac{(x, y) \in r}{(x+1, y+1) \in r} \text { (incease both) } \\
\frac{(x, y) \in r}{(x-1, y-1) \in r} \text { (decrease both) }
\end{gathered}
$$

Inductively defined relations

We can use inductive rules to define type systems, grammars, interpreters, ...
We define a relation r using rules of the form

$$
\frac{t_{1}(\bar{x}) \in r, \ldots, t_{n}(\bar{x}) \in r}{t(\bar{x}) \in r}
$$

where $t_{i}(\bar{x}) \in r$ are assumptions and $t(\bar{x}) \in r$ is the conclusion. When $n=0$ (no assumptions), the rule is called an axiom.

A derivation tree has nodes marked by tuples $t(\bar{a})$ for some specific values \bar{a} of \bar{x}.
We define relation r as the set of all tuples for which there exists a derivation tree. This is the smallest relation that satisfies the rules.

Amyrli language

Tiny language similar to one in the project.
Works only on integers and booleans.
(Initial) program is a pair $\left(e_{\text {top }}, t_{\text {top }}\right)$ where

- $e_{\text {top }}$ is the top-level environment mapping function names to function definitions
- $t_{\text {top }}$ is the top-level term (expression) that starts execution

Function definition for a given function name is a tuple of: parameter list \bar{x}, parameter types $\bar{\tau}$, expression representing function body t, and result type τ_{0}.

Expressions are formed by invoking primitive functions $(+,-, \leq, \& \&)$, invocations of defined functions, or if expressions.
No local val definitions nor match. e will remain fixed

Amyrli: abstract syntax of terms

$$
t:=\text { true } \mid \text { false }\left|c_{l}\right| f\left(t_{1}, \ldots, t_{n}\right) \mid \text { if }(t) t_{1} \text { else } t_{2}
$$

where

- $c_{l} \in \mathbb{Z}$ denotes integer constant
- f denotes either application of a user-defined function or one of the primitive operators

Program representation as a mathematical structure

$$
\begin{aligned}
& p_{\text {fact }}=(e, \text { fact }(2)) \\
& \text { where } e(\text { fact })=(n, \text { Int, if }(n \leq 1) 1 \text { else } n * \operatorname{fact}(n-1), \text { Int })
\end{aligned}
$$

Operational semantics of Amyrli: if expression

We specify the result of executing the program as an inductively defined binary (infix) relation " \sim " on programs. If the top-level expression becomes a constant after some number of steps of \sim, we have computed the result: $t \stackrel{*}{\sim} c$ Rules for if:

$$
\frac{b \leadsto b^{\prime}}{\left(\text { if }(b) t_{1} \text { else } t_{2}\right) \sim\left(\text { if }\left(b^{\prime}\right) t_{1} \text { else } t_{2}\right)}
$$

$\overline{\left(\text { if }(\text { true }) t_{1} \text { else } t_{2}\right) \sim t_{1}}$
$\overline{\left(\text { if }(\text { false }) t_{1} \text { else } t_{2}\right) \sim t_{2}}$

Operational semantics of Amyrli: primitives

 Logical operators:$$
\frac{b_{1} \leadsto b_{1}^{\prime}}{\left(b_{1} \& \& b_{2}\right) \sim\left(b_{1}^{\prime} \& \& b_{2}\right)}
$$

$$
\overline{\left(\text { true } \& \& b_{2}\right) \sim b_{2}}
$$

$\overline{\left(\text { false } \& \& b_{2}\right) \sim \text { false }}$
Arithmetic:

$$
\begin{aligned}
& k_{1} \leadsto k_{1}^{\prime} \\
&\left(k_{1}+k_{2}\right) \sim\left(k_{1}^{\prime}+k_{2}\right) \\
& \frac{k_{2}}{\sim} \sim k_{2}^{\prime} \\
& \frac{\left(c+k_{2}\right)}{\left(c_{1}+c_{2}\right) \sim c}\left(c+k_{2}^{\prime}\right) \\
& c_{1}, c_{2}, c \in \mathbb{Z} \\
&
\end{aligned}
$$

Operational semantics: user function f

If c_{1}, \ldots, c_{i-1} are constants, then (as expected in call-by-value)

$$
\frac{t_{i} \leadsto t_{i}^{\prime}}{f\left(c_{1}, \ldots, c_{i-1}, t_{i}, \ldots\right)} \sim f\left(c_{1}, \ldots, c_{i-1}, t_{i}^{\prime}, \ldots\right)
$$

Let the environment e define f by $e(f)=\left(\left(x_{1}, \ldots, x_{n}\right), \bar{\tau}, t_{f}, \tau_{0}\right)$

- $\left(x_{1}, \ldots, x_{n}\right)$ is the list of formal parameters of f
- t_{f} is the body of the function f

Then we can apply rule

$$
\overline{f\left(c_{1}, \ldots, c_{n}\right) \sim t_{f}\left[x_{1}:=c_{1}, \ldots, x_{n}:=c_{n}\right]}
$$

In general, if t is term, then $t\left[x_{1}:=t_{1}, \ldots, x_{n}:=t_{n}\right]$ denotes result of substituting (replacing) in t each variable x_{i} by term t_{i}.

Execution of factorial example program

$$
\begin{aligned}
& p_{\text {fact }}=(e, \text { fact }(2)) \\
& \text { where } e(\text { fact })=(n, \text { Int, if }(n \leq 1) 1 \text { else } n * \operatorname{fact}(n-1) \text {, Int }) \\
& \qquad \text { fact }(2) \leadsto
\end{aligned}
$$

Execution of factorial example program

$$
\begin{aligned}
& p_{\text {fact }}=(e, \text { fact }(2)) \\
& \text { where } e(\text { fact })=(n, \text { Int, if }(n \leq 1) 1 \text { else } n * \operatorname{fact}(n-1) \text {, Int }) \\
& \qquad \text { fact }(2) \sim \\
& \quad \text { if }(2 \leq 1) 1 \text { else } 2 * \operatorname{fact}(2-1) \sim
\end{aligned}
$$

Execution of factorial example program

```
\(p_{\text {fact }}=(e\), fact (2) \()\)
where \(e(\) fact \()=(n\), Int, if \((n \leq 1) 1\) else \(n * \operatorname{fact}(n-1)\), Int \()\)
fact(2) ~
if \((2 \leq 1) 1\) else \(2 * \operatorname{fact}(2-1) \sim\)
if (false) 1 else \(2 * \operatorname{fact}(2-1) \sim\)
```


Execution of factorial example program

```
\(p_{\text {fact }}=(e\), fact (2) \()\)
where \(e(f a c t)=(n\), Int, if \((n \leq 1) 1\) else \(n * \operatorname{fact}(n-1)\), Int \()\)
fact(2) ~
if \((2 \leq 1) 1\) else \(2 * \operatorname{fact}(2-1) \sim\)
if (false) 1 else \(2 * \operatorname{fact}(2-1) \sim\)
\(2 * \operatorname{fact}(2-1) \sim\)
```


Execution of factorial example program

```
\(p_{\text {fact }}=(e\), fact (2) \()\)
where \(e(f a c t)=(n\), Int, if \((n \leq 1) 1\) else \(n * \operatorname{fact}(n-1)\), Int \()\)
```

```
fact(2) ~
```

fact(2) ~
if $(2 \leq 1) 1$ else $2 * \operatorname{fact}(2-1) \sim$
if $(2 \leq 1) 1$ else $2 * \operatorname{fact}(2-1) \sim$
if (false) 1 else $2 * \operatorname{fact}(2-1) \sim$
if (false) 1 else $2 * \operatorname{fact}(2-1) \sim$
$2 * \operatorname{fact}(2-1) \sim$
$2 * \operatorname{fact}(2-1) \sim$
$2 * \operatorname{fact}(1) \sim$

```
\(2 * \operatorname{fact}(1) \sim\)
```


Execution of factorial example program

```
\(p_{\text {fact }}=(e\), fact \((2))\)
where \(e(\) fact \()=(n\), Int, if \((n \leq 1) 1\) else \(n *\) fact \((n-1)\), Int \()\)
```

```
fact(2) ~
if \((2 \leq 1) 1\) else \(2 *\) fact \((2-1) \sim\)
if (false) 1 else \(2 *\) fact ( \(2-1\) ) \(\sim\)
\(2 * \operatorname{fact}(2-1) \sim\)
\(2 *\) fact \((1) \sim\)
\(2 *(\) if \((1 \leq 1) 1\) else \(1 * \operatorname{fact}(1-1)) \sim\)
```


Execution of factorial example program

```
\(p_{\text {fact }}=(e\), fact \((2))\)
where \(e(\) fact \()=(n\), Int, if \((n \leq 1) 1\) else \(n *\) fact \((n-1)\), Int \()\)
```

$$
\begin{aligned}
& \text { fact }(2) \leadsto \\
& \text { if }(2 \leq 1) 1 \text { else } 2 * \text { fact }(2-1) \sim \\
& \text { if }(\text { false }) 1 \text { else } 2 * \text { fact }(2-1) \sim \\
& 2 * \text { fact }(2-1) \sim \\
& 2 * \text { fact }(1) \sim \\
& 2 * \text { (if }(1 \leq 1) 1 \text { else } 1 * \text { fact }(1-1)) \leadsto \\
& 2 *(\text { if }(\text { true }) 1 \text { else } 1 * \text { fact }(1-1)) \leadsto
\end{aligned}
$$

Execution of factorial example program

```
\(p_{\text {fact }}=(e\), fact \((2))\)
where \(e(\) fact \()=(n\), Int, if \((n \leq 1) 1\) else \(n *\) fact \((n-1)\), Int \()\)
```

$$
\begin{aligned}
& \text { fact }(2) \leadsto \\
& \text { if }(2 \leq 1) 1 \text { else } 2 * \text { fact }(2-1) \leadsto \\
& \text { if }(\text { false }) 1 \text { else } 2 * \text { fact }(2-1) \leadsto \\
& 2 * \text { fact }(2-1) \sim \\
& 2 * \text { fact }(1) \sim \\
& 2 * \text { (if }(1 \leq 1) 1 \text { else } 1 * \text { fact }(1-1)) \leadsto \\
& 2 * \text { (if }(\text { true }) 1 \text { else } 1 * \text { fact }(1-1)) \sim \\
& 2 * 1 \sim
\end{aligned}
$$

Execution of factorial example program

```
\(p_{\text {fact }}=(e\), fact \((2))\)
where \(e(\) fact \()=(n\), Int, if \((n \leq 1) 1\) else \(n *\) fact \((n-1)\), Int \()\)
```

```
fact(2) ~
if (2\leq1) 1 else 2*fact(2-1) ~
if (false) 1 else 2* *act(2 - 1) ~
2* fact(2-1) ~
2*fact(1) ~
2*(if(1\leq1) 1 else 1*fact(1-1)) }
2*(if (true) 1 else 1* fact(1-1)) ~
2*1~
2
```


Getting stuck

If program makes no sense, we have no rule to define its evaluation.
Example: consider this top-level expression:

$$
\text { if (5) } 3 \text { else } 7
$$

the expression 5 cannot be evaluated further and is a constant, but there are no rules for when arguments of if is a number constant, only rules for boolean constants.

Such programs, that are not constants and have no applicable rules, are called stuck, because no further steps are possible.

Stuck programs indicate errors. Type checking is a way to detect them statically, without trying to (dynamically) execute a program and see if it will get stuck or produce result.

Type Rules: Program

After the definition of operational semantics, we define type rules (also inductively).
Given initial program (e,t) define

$$
\Gamma_{0}=\left\{\left(f, \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau_{0}\right) \mid\left(f,,,\left(\tau_{1}, \ldots, \tau_{n}\right), t_{f}, \tau_{0}\right) \in e\right\}
$$

We say program type checks if the top-level expression type checks:

$$
\Gamma_{0} \vdash t: \tau
$$

and each function body type checks:

$$
\Gamma_{0} \oplus\left\{\left(x_{1}, \tau_{1}\right), \ldots,\left(x_{n}, \tau_{n}\right)\right\} \vdash t_{f}: \tau_{0}
$$

for each $\left(f,\left(x_{1}, \ldots, x_{n}\right),\left(\tau_{1}, \ldots, \tau_{n}\right), t_{f}, \tau_{0}\right) \in e$

Type Rules are as Usual

$$
\begin{gathered}
\frac{\Gamma \vdash b: \text { Bool, }, \Gamma \vdash t_{1}: \tau, \quad \Gamma \vdash t_{2}: \tau}{\Gamma \vdash\left(\text { if }(b) t_{1} \text { else } t_{2}\right): \tau} \\
\frac{\Gamma \vdash f: \tau_{1} \times \cdots \times \tau_{n} \rightarrow \tau_{0}, \quad \Gamma \vdash t_{1}: \tau_{1}, \ldots, \Gamma \vdash t_{n}: \tau_{n}}{\Gamma \vdash f\left(t_{1}, \ldots, t_{n}\right): \tau_{0}}
\end{gathered}
$$

We treat primitives like applications of functions e.g.
$+: I n t \times I n t \rightarrow I n t$
$\leq:$ Int \times Int \rightarrow Bool
\&\&: Bool \times Bool \rightarrow Bool

Soundness through progress and preservation

Soundness theorem: if a program type checks, then its evaluation does not get stuck.
Proof uses the following two lemmas, which is a common approach:

- progress: if a program type checks, it is not stuck: if

$$
\Gamma \vdash t: \tau
$$

then either t is a constant or there exists t^{\prime} such that $t \sim t^{\prime}$

- preservation: if a program type checks and makes one \sim step, the result again type checks here: type checks and has the same type: if

$$
\Gamma \vdash t: \tau
$$

and $t \sim t^{\prime}$ then

$$
\Gamma \vdash t^{\prime}: \tau
$$

Proof of progress and preservation - case of if

We prove conjunction of progress and preservation by induction on term t such that $\Gamma \vdash t: \tau$. The operational semantics defines the non-error cases of an interpreter, which makes case analysis. Consider if. By type checking rules, if can only type check if its condition b type checks and has type Bool. By inductive hypothesis and progress either b is constant or it can be reduced to b^{\prime}. If it is constant one of these rules apply:

$$
\overline{\text { (if } \left.(\text { true }) t_{1} \text { else } t_{2}\right) \leadsto t_{1}}
$$

$$
\overline{\left(\text { if }(\text { false }) t_{1} \text { else } t_{2}\right) \sim t_{2}}
$$

and the result, by type rule for if, has type τ. If b^{\prime} is not constant and the assumption of the rule

$$
\begin{aligned}
b & \sim b^{\prime} \\
\left(\text { if }(b) t_{1} \text { else } t_{2}\right) & \sim\left(\text { if }\left(b^{\prime}\right) t_{1} \text { else } t_{2}\right)
\end{aligned}
$$

applies so t also makes progress. Moreover, by preservation b^{\prime} also has type Bool, so the entire expression can be typed as τ by re-using the type derivations for t_{1} and t_{2}.

Progress and preservation - user defined functions

Following the cases of operational semantics, either all arguments of function have been evaluated to a constant, or some are not yet constant. If they are not all constants, the case is as for the condition of if, so we establish progress and preservation.
Otherwise rule

$$
\overline{f\left(c_{1}, \ldots, c_{n}\right) \leadsto t_{f}\left[x_{1}:=c_{1}, \ldots, x_{n}:=c_{n}\right]}
$$

applies, so progress is ensured. For preservation, we need to show

$$
\begin{equation*}
\Gamma \vdash t_{f}\left[x_{1}:=c_{1}, \ldots, x_{n}:=c_{n}\right]: \tau \tag{*}
\end{equation*}
$$

where $e(f)=\left(\left(x_{1}, \ldots, x_{n}\right),\left(\tau_{1}, \ldots, \tau_{n}\right), t_{f}, \tau_{0}\right)$ and t_{f} is the body of f. According to type rules $\tau=\tau_{0}$ and $\Gamma \vdash c_{i}: \tau_{i}$.

Progress and preservation - substitution and types

Function f definition type checks, so $\Gamma^{\prime} \vdash t_{f}: \tau_{0}$ where
$\Gamma^{\prime}=\Gamma \oplus\left\{\left(x_{1}, \tau_{1}\right), \ldots,\left(x_{n}, \tau_{n}\right)\right\}$.
C onsider the type derivation tree for t_{f} and replace each use of $\Gamma^{\prime} \vdash x_{i}: \tau_{i}$ with $\Gamma \vdash c_{i}: \tau_{i}$. The result is a type derivation for $(*)$:

$$
\begin{equation*}
\Gamma \vdash t_{f}\left[x_{1}:=c_{1}, \ldots, x_{n}:=c_{n}\right]: \tau \tag{*}
\end{equation*}
$$

Therefore, the preservation holds in this case as well.

