
Conversion to Chomsky Normal Form
(CNF)

Steps: (not in the optimal order)
–remove unproductive symbols
–remove unreachable symbols
–remove epsilons (no non-start nullable symbols)
–remove single non-terminal productions

(unit productions) X::=Y
–reduce arity of every production to less than two
–make terminals occur alone on right-hand side

1) Unproductive non-terminals

What is funny about this grammar:
 stmt ::= identifier := identifier
 | while (expr) stmt
 | if (expr) stmt else stmt
 expr ::= term + term | term – term
 term ::= factor * factor
 factor ::= (expr)

There is no derivation of a sequence of tokens from expr

In every step will have at least one expr, term, or factor

If it cannot derive sequence of tokens we call it unproductive

1) Unproductive non-terminals

Productive symbols are obtained using these
two rules (what remains is unproductive)

–Terminals are productive
–If X::= s1 s2 … sn is a rule and each si is productive
then X is productive

Delete unproductive
symbols.

The language recognized by the
grammar will not change

2) Unreachable non-terminals

What is funny about this grammar with start
symbol ‘program’
 program ::= stmt | stmt program
 stmt ::= assignment | whileStmt
 assignment ::= expr = expr
 ifStmt ::= if (expr) stmt else stmt
 whileStmt ::= while (expr) stmt
 expr ::= identifier

No way to reach symbol ‘ifStmt’ from ‘program’

Can we formulate rules for reachable symbols ?

2) Unreachable non-terminals

Reachable terminals are obtained using the
following rules (the rest are unreachable)

–starting non-terminal is reachable (program)
–If X::= s1 s2 … sn is rule and

Delete unreachable nonterminals and their
productions

X is reachable then

every non-terminal in s1 s2 … sn is reachable

3) Removing Empty Strings

Ensure only top-level symbol can be nullable

 program ::= stmtSeq
 stmtSeq ::= stmt | stmt ; stmtSeq
 stmt ::= “” | assignment | whileStmt | blockStmt
 blockStmt ::= { stmtSeq }
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt
 expr ::= identifier

How to do it in this example?

3) Removing Empty Strings - Result

 program ::= “” | stmtSeq
 stmtSeq ::= stmt| stmt ; stmtSeq |
 | ; stmtSeq | stmt ; | ;
 stmt ::= assignment | whileStmt | blockStmt
 blockStmt ::= { stmtSeq } | { }
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt
 whileStmt ::= while (expr)
 expr ::= identifier

3) Removing Empty Strings - Algorithm

3) Removing Empty Strings

• Since stmtSeq is nullable, the rule
 blockStmt ::= { stmtSeq }
gives
 blockStmt ::= { stmtSeq } | { }

• Since stmtSeq and stmt are nullable, the rule
 stmtSeq ::= stmt | stmt ; stmtSeq
gives
 stmtSeq ::= stmt | stmt ; stmtSeq

 | ; stmtSeq | stmt ; | ;

4) Eliminating unit productions

• Single production is of the form
X ::=Y

where X,Y are non-terminals
 program ::= stmtSeq
 stmtSeq ::= stmt
 | stmt ; stmtSeq
 stmt ::= assignment | whileStmt
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt

4) Unit Production Elimination
Algorithm

• If there is a unit production
X ::=Y put an edge (X,Y) into graph

• If there is a path from X to Z in the graph, and
there is rule Z ::= s1 s2 … sn then add rule

X ::= s1 s2 … sn

At the end, remove all unit productions.

4) Eliminate unit productions - Result

 program ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmtSeq ::= expr = expr | while (expr) stmt
 | stmt ; stmtSeq
 stmt ::= expr = expr | while (expr) stmt
 assignment ::= expr = expr
 whileStmt ::= while (expr) stmt

5) Reducing Arity:
No more than 2 symbols on RHS

stmt ::= while (expr) stmt
becomes

stmt ::= while stmt1

stmt1 ::= (stmt2

stmt2 ::= expr stmt3

stmt3 ::=) stmt

6) A non-terminal for each terminal

stmt ::= while (expr) stmt
becomes

stmt ::= Nwhile stmt1

stmt1 ::= N(stmt2

stmt2 ::= expr stmt3

stmt3 ::= N) stmt
Nwhile ::= while
N(::= (
N) ::=)

Order of steps in conversion to CNF
1. remove unproductive symbols (optional)
2. remove unreachable symbols (optional)
3. make terminals occur alone on right-hand side
4. Reduce arity of every production to <= 2
5. remove epsilons
6. remove unit productions X::=Y
7. unproductive symbols
8. unreachable symbols
– What if we swap the steps 4 and 5 ?

• Potentially exponential blow-up in the # of productions

Ordering of
Unreachable / Unproductive symbols

S := B C | “”
C := D
D := a
R := r

First Unreachable then Unproductive

S := “”
C := D
D := a

S := B C | “”
C := D
D := a

S := B C | “”
C := D
D := C
R := r

First Unproductive then Unreachable

S := “”S := “”
C := D
D := a
R := r

Alternative

We need not go all the way to Chomsky form
it is possible to directly parse arbitrary grammar

Key steps: (not in the optimal order)
– reduce arity of every production to less than two

(otherwise, worse than cubic in string input size)
Can be less efficient in grammar size, but still works

A well-known algorithm for arbitrary grammars:
Earley’s parsing algorithm

