
Abstract Interpretation Continued
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Chain of Length n

• A set of elements x0,x1 ,..., xn in D that are linearly 
ordered, that is  x0 < x1 < ... < xn

• A lattice can have many chains. Its height is the 
maximum n for all the chains

• If there is no upper bound on lengths of chains, 
we say lattice has infinite height

• Any monotonic sequence of distinct elements has 
length at most equal to lattice height
– including sequence occuring during analysis!

– such sequences are always monotonic



In constant propagation, each value can 
change only twice

x = 1

n = 1000

while (x < n) {

x = x + 2

}



10-1-2 2

height=2

size =∞ … …

consider value for x 

before assignment

• Initially: 

• changes 1st time to: 1

• change 2nd time to: T
total changes: two (height)

var facts : Map[Nodes,Map[VarNames,Element]]

T

Total number of changes bounded by:    height∙|Nodes| ∙|Vars|



Exercise

B32 – the set of all 32-bit integers 

What is the upper bound for number of changes in 
the entire analysis for: 

– 3 variables, 

– 7 program points

for these two analyses:

1) constant propagation for constants from B32

2) The following domain D:

D = {} U { [a,b] | a,b B32  , a ≤ b}



Height of B32

D = {} U { [a,b] | a,b B32  , a ≤ b}

One possible chain of maximal length:



…

[MinInt,MaxInt]



Initialization Analysis

uninitialized

first 

initialization

initialized



What does javac say to this:
class Test {

static void test(int p) {

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

while (n != 0) {

System.out.println(n);

n = n - p;

}

}

}

Test.java:8: variable n might not have been initialized

while (n > 0) {

^

1 error



Program that compiles in java
class Test {

static void test(int p) {

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

else {

n = -100;

}

while (n != 0) {

System.out.println(n);

n = n - p;

}

}

}

We would like variables to be 

initialized on all execution paths. 

Otherwise, the program execution 

could be undesirably affected by 

the value that was in the variable 

initially.

We can enforce such check using

initialization analysis.



What does javac say to this?

static void test(int p) {

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

System.out.println(“Hello!”);

if (p > 0) {

while (n != 0) {

System.out.println(n);

n = n - p;

}

}

}



Initialization Analysis
T indicates presence of flow from states where 
variable was not initialized:

• If variable is possibly uninitialized, we use T

• Otherwise (initialized, or unreachable): 

class Test {

static void test(int p) {

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

else {

n = -100;

}

while (n != 0) {

System.out.println(n);

n = n - p;

}

}

}
If var occurs anywhere but left-hand side

of assignment and has value T, report error



Sketch of Initialization Analysis

• Domain: for each variable, for each program point:
D = {,T}

• At program entry, local variables: T ;  parameters: 

• At other program points: each variable: 

• An assignment   x = e  sets variable x to 

• lub (join,    ) of any value with T gives T

– uninitialized values are contagious along paths

–  value for x means there is definitely no possibility for 
accessing uninitialized value of x



Run initialization analysis Ex.1

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

while (n != 0) {

n = n - p;

}



Run initialization analysis Ex.2

int n;

p = p - 1;

if (p > 0) {

n = 100;

}

if (p > 0) {

n = n - p;

}



Liveness Analysis

dead

live

dead

last use

first 

initialization

dead
live

Variable is dead if its current value will not be used in the future.
If there are no uses before it is reassigned or the execution ends, 
then the variable is surely dead at a given point.



Example:

x = y + x

if (x > y) 

What is Written and What Read

Purpose:
Register allocation:

find good way to decide 
which variable should go 
to which register at what 
point in time.



How Transfer Functions Look



Initialization: Forward Analysis

Liveness: Backward Analysis

while (there was change)
pick edge (v1,statmt,v2) from CFG

such that facts(v1) has changed
facts(v2)=facts(v2) join transferFun(statmt, facts(v1))

}

while (there was change)

pick edge (v1,statmt,v2) from CFG

such that facts(v2) has changed

facts(v1)=facts(v1) join transferFun(statmt, facts(v2))

}



Example

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

res1 = xy + yz

m[3] = res1 + xz



Register Machines
Better for most purposes than stack machines

– closer to modern CPUs (RISC architecture)

– closer to control-flow graphs

– simpler than stack machine (but register set is finite)

Examples:
ARM architecture

RISC V: http://riscv.org/

Directly Addressable

RAM

large - GB, slow even with 

cache

R0,R1,…,R

31

A few fast

registers

http://en.wikipedia.org/wiki/ARM architecture
http://riscv.org/


Basic Instructions of Register Machines

RiMem[Rj] load

Mem[Rj] Ri store

Ri Rj * Rk compute: for an operation *

Efficient register machine code uses as few 
loads and stores as possible.



State Mapped to Register Machine

Both dynamically allocated heap and stack expand 
– heap need not be contiguous; can request more 

memory from the OS if needed
– stack grows downwards

Heap is more general: 
• Can allocate, read/write, and deallocate, 

in any order
• Garbage Collector does deallocation automatically

– Must be able to find free space among used one, 
group free blocks into larger ones (compaction),…

Stack is more efficient:
• allocation is simple: increment, decrement 
• top of stack pointer (SP) is often a register
• if stack grows towards smaller addresses: 

– to allocate N bytes on stack (push):    SP := SP - N 
– to deallocate N bytes on stack (pop): SP := SP + N 

Stack

Heap

Constants

Static Globals

free memory

SP

0

50kb

10MB

1 GB

Exact picture may

depend on 

hardware and OS



Stack Machine vs General Register 
Machine Code

Naïve Correct Translation

R1 Mem[SP]

SP = SP + 4

R2 Mem[SP]

R2  R1 * R2

Mem[SP]  R2

i32.mul

JVM: Register 
Machine:



Register Allocation



How many variables? 
x,y,z,xy,xz,res1

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

res1 = xy + yz

m[3] = res1 + xz

Do we need 6 distinct registers if we wish to avoid load and stores?

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

y = x*z // reuse y

x = xy + yz // reuse x

m[3] = x + y

can do it with 5 only!7 variables:

x,y,z,xy,yz,xz,res1



Idea of Register Allocation

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}      {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}       {}

live variable analysis result:

program:



Color Variables
Avoid Overlap of Same Colors

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}      {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}       {}

live variable analysis result:

program:

R1
R2
R3
R4

Each color denotes a register
4 registers are enough for this program



Color Variables
Avoid Overlap of Same Colors

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}      {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}       {}

live variable analysis result:

program:

R1
R2
R3
R4

Each color denotes a register
4 registers are enough for this 7-variable program

y yz
x

z xz

xy r



How to assign colors to variables?

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}     {y,z,x,xy} {x,z,xy,yz}    {xy,yz,xz}          {r,xz}                    {}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a 
point at which they are both alive.
Construct interference graph

y yz

x
z

xzxy

r



Edges between members of each set

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}     {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}        {}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a 
point at which they are both alive.
Construct interference graph

y yz

x
z

xzxy

r



Final interference graph

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}     {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}        {}

live variable analysis result:

program:

For each pair of variables determine
if their lifetime overlaps = there is a 
point at which they are both alive.
Construct interference graph

y yz

x
z

xzxy

r



Coloring interference graph

x = m[0];    y = m[1];     xy = x*y;     z = m[2];    yz = y*z;    xz = x*z;    r = xy + yz;    m[3] = r + xz

x
y
z
xy
yz
xz
r

{}                  {x}             {x,y}         {y,x,xy}     {y,z,x,xy}   {x,z,xy,yz}    {xy,yz,xz}          {r,xz}        {}

live variable analysis result:

program:

Need to assign colors (register numbers) to
nodes such that: 
if there is an edge between nodes, 
then those nodes have different colors.
 standard graph vertex coloring problem

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4



Idea of Graph Coloring

• Register Interference Graph (RIG):
– indicates whether there exists a point of time 

where both variables are live

– look at the sets of live variables at all progrma 
points after running live-variable analysis

– if two variables occur together, draw an edge

– we aim to assign different registers to such these 
variables

– finding assignment of variables to K registers: 
corresponds to coloring graph using K colors



All we need to do is 
solve graph coloring problem

• NP hard
• In practice, we have heuristics that work for typical graphs
• If we cannot fit it all variables into registers, 

perform a spill:
store variable into memory and load later when needed

y yz

x
z

xz
xy

r



Heuristic for Coloring with K Colors

Simplify:
If there is a node with less than K neighbors, we will always be able to color it! 
So we can remove such node from the graph (if it exists, otherwise remove other node)

This reduces graph size. It is useful, even though incomplete 
(e.g. planar can be colored by at most 4 colors, yet can have nodes with many neighbors)

y yz

x
z

xzxy

r y yz

x
z

xzxy

y yz

x
z

xy

y

x
z

xy

y

z

xy

y

zz



Heuristic for Coloring with K Colors

Select
Assign colors backwards, adding nodes that were removed 
If the node was removed because it had <K neighbors, we will always find a color

if there are multiple possibilities, we can choose any color

y:2 yz:2

x:1
z:3

xz:3
xy:4

y:2 yz:2

x:1
z:3

xy:4

y:2

x:1
z:3

xy:4

y:2

z:3

xy:4

y:2

z:3z:3

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4



Use Computed Registers

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

r = xy + yz

m[3] = res1 + xz

y:2 yz:2

x:1
z:3

xz:3
xy:4

r:4 R1 = m[0]

R2 = m[1]

R4 = R1*R2

R3 = m[2]

R2 = R2*R3

R3 = R1*R3

R4 = R4 + R2

m[3] = R4 + R3



Summary of Heuristic for Coloring

Simplify (forward, safe):
If there is a node with less than K neighbors, we will always be able to color it! 
so we can remove it from the graph

Potential Spill (forward, speculative):
If every node has K or more neighbors, we still remove one of them 
we mark it as node for potential spilling. Then remove it and continue

Select (backward):
Assign colors backwards, adding nodes that were removed 

If we find a node that was spilled, we check if we are lucky, that we can color it.
if yes, continue

if not, insert instructions to save and load values from memory (actual spill).
Restart with new graph (a graph is now easier to color as we killed a variable)



Conservative Coalescing
Suppose variables tmp1 and tmp2 are both assigned to the same register 
R and the program has an instruction:

tmp2 = tmp1
which moves the value of tmp1 into tmp2. This instruction then becomes

R = R
which can be simply omitted!
How to force a register allocator to assign tmp1 and tmp2 to same 
register?

merge the nodes for tmp1 and tmp2 in the interference graph!
this is called coalescing

But: if we coalesce non-interfering nodes when there are assignments, 
then our graph may become more difficult to color, and we may in fact 
need more registers!
Conservative coalescing: coalesce only if merged node of tmp1 and tmp2 
will have a small degree so that we are sure that we will be able to color it
(e.g. resulting node has degree < K)



Run Register Allocation Ex.3
use 4 registers, coallesce j=i

i = 0

s = s + i

i = i + b

j = i

s = s + j + b

j = j + 1



Run Register Allocation Ex.3
use 3 registers, coallesce j=i

{s,b}
i = 0

{s,i,b}
s = s + i

{s,i,b}
i = i + b

{s,i,b}
j = i

{s,j,b}
s = s + j + b

{j}
j = j + 1

{}

s i

j b

s i,j

b

coalesce

color

s:1 i,j:2

b:3



Run Register Allocation Ex.3
use 4 registers, coallesce j=i

i = 0

s = s + i

i = i + b

j = i  // puf!

s = s + j + b

j = j + 1

R2 = 0

R1 = R1 + R2

R2 = R2 + R3

R1 = R1 + R2 + R3

R2 = R2 + 1

s:1 i,j:2

b:3


