Quiz
Compiler Construction, Fall 2010
Monday, December 20, 2010

Last Name :
First Name :
Exercise | Points | Achieved Points
1 10
2 10
Total 20

General notes about this quiz

e This is an open book examination. You are allowed to use any written material. You are
not allowed to use the notes of your neighbors.

e You have totally three hours.

e The points of the questions are not equal. It is advisable not to spend most of your time
on the questions with less grade.

Problem 1: Lexical Analysis (10 points)

The increment operator in C++ is ++ (in fact C++ means incrementing the language C).
Increment can be both prefix and suffix, so + + x and z + + effectively increase the value of z.
Consider the alphabet ¥ = {+,z}. We want to generate all the valid expressions that can be
generated using these two symbols. The symbol + of the alphabet can be used in an increment
operator (z++4), can be a binary operator (z+x) or a unary operator (+x). The lexical analyzer
returns the following classes of tokens:

1. PLUS: The binary or unary operator +
2. VAR: The variable x
3. INC: The increment operator ++

For example consider the following expressions and their corresponding tokenizing.

Expression Tokens ‘ ‘
+x PLUS VAR

T+ + VAR INC

T+r+w VAR PLUS VAR PLUS VAR
++x++ INC VAR INC

T+ +x VAR PLUS PLUS VAR
r+++x VAR INC PLUS VAR
x++++2 | VAR INC PLUS PLUS VAR

a) Determine for each row of the table if the tokenizing can be done by a longest matching
lexical analyzer or not. You can put a v' or X beside each row in the table.
For the negative answer justify why the result cannot be generated by a longest matching
lexical analyzer.

b) Consider a restriction on the language which allows only three operands ++x, x++ and
x and only one operator, binary 4. Design a lexical analyzer which can tokenize the
generated language by giving a deterministic finite automaton.

¢) Do you need the longest match rule for the analyzer in part b?

Problem 2: Parsing (10 points)

Consider the following grammar on 3 = {=, ,,Int}. The symbol $ shows the end of file.

1: 8 —S$%
2: § —=>T=S5
3: T —=S,T
4: T — Int
5: S — Int

a) Compute the first and follow of the non-terminals S’, S and T.
b) Determine if there is an input for which there exist at least two different parse trees.

¢) Make an equivalent grammar with minimal changes so that the grammar can be recognized
by an LL(1) parser.

