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…Compilers are, however, vulnerable to miscompilation: bugs in the
compiler that cause incorrect code to be generated from a correct
source code, possibly invalidating the guarantees so painfully
obtained by source-level formal verification. Recent experimental
studies show that many widely-used production-quality compilers
suffer from miscompilation. The formal verification of compilers
and related code generators is a radical, mathematically-grounded
answer to the miscompilation issue. By applying formal verification
(typically, interactive theorem proving) to the compiler itself, it is
possible to guarantee that the compiler preserves the semantics of
the source programs it transforms, or at least preserves the
properties of interest that were formally verified over the source
programs…



Exercise: Unary Minus
1) Show that the grammar 

A ::=  − A 
A ::=  A − id 
A ::=  id

is ambiguous by finding a string that has two different 
parse trees. Show those parse trees.

2) Make two different unambiguous grammars for the 
same language:
a) One where prefix minus binds stronger than infix minus.
b) One where infix minus binds stronger than prefix minus.
3) Show the syntax trees using the new grammars for the 
string you used to prove the original grammar ambiguous.

4) Give a regular expression describing the same language.



Unary Minus Solution Sketch
1) An example of a string with two parse trees is

- id - id
The two parse trees are generated by these imaginary parentheses (shown 
red): -(id-id) (-id)-id

and can generated by these derivations that give different parse trees
A => -A => - A - id => - id - id
A => A - id => - A - id => - id - id

2) a) prefix minus binds stronger:
A ::= B | A - id         B ::= -B | id

b) infix minus binds stronger

A ::= C | -A C ::= id | C - id
3) in two trees that used to be ambiguous instead of some A’s we have B’s in 
a) grammar or C’s in b) grammar.

4)   -*id(-id)*



Exercise: Basic Dangling Else
The dangling-else problem happens when the 
conditional statements are parsed using the following 
grammar. 

S ::= id := id
S ::= if id then S
S ::= if id then S else S 

1) To prove that the grammar is ambiguous, find two 
parse trees that derive the same string

2) Find an unambiguous grammar that accepts the 
same strings and matches the else statement with the 
nearest unmatched if.

• This is a real issue in languages like C, Java
– resolved by saying else binds to innermost if



Dangling Else: Ambiguous Input

1) if id then 
if id then 

id := id 
else 

id := id



Dangling Else: Solution

In class we have seen several wrong solutions, which 
are either still ambiguous, or remove some strings from 
the grammar. 
The following is a correct solution:

S ::= id := id
S ::= if id then S
S ::= if id then S1 else S 
S1 ::= id := id
S1 ::= if id then S1 else S1

It can be parsed using recursive descent (LL(1)) parsers, 
so it is non-ambiguous. We will see later how to show 
this mechanically.



Dangling Else: Solution (Continued)
It is clear that every string of the new grammar can be derived by the old one: 
take a parse tree of the new grammar, and replace S1 with S. We obtain a 
valid parse tree of the old grammar.

It is less obvious that the converse holds: for every parse tree in the old 
grammar, we can find a parse tree in the new grammar that yields the same 
string. We prove this as follows.

Consider a derivation in the old grammar. Apply the following transformation 
to all subtrees in the old tree as long long as possible:

This transformation preserves 
the string that the parse tree yields.



Dangling Else: Solution (Continued)
In the resulting tree, consider every subtree that appears like this:

And replace all occurrences of S inside such subtree with S1

The crucial observation is that inside such tree each “then” has a 
corresponding else branch. This is clear for the top level, 
otherwise we would have moved the else shown in the picture 
one level down using the transformation on the previous slide. By 
applying this reasoning to the if then else inside, we also 
conclude (by induction) that all if nodes have else branches.

This means that we have a valid tree according to the new 
grammar.



Exercise: Dangling Else in Context

Suppose that in addition assignments and if 
statements we have statement sequencing:

S ::= S ; S
S ::= id := id
S ::= if id then S
S ::= if id then S else S 

Find an unambiguous grammar that accepts the 
same conditional statements, matches the else 
statement with the nearest unmatched if, and 
treats the priority of “;” similarly to Java.



Sources of Ambiguity in this Example

• Ambiguity arises in this grammar here due to:

– dangling else

– binary rule for sequence (;) as for parentheses

– priority between if-then-else and semicolon (;)

if p1

if p2
z  = x;
u = z          // last assignment is not inside if

Wrong parse tree -> wrong generated code



How we Solved It
We identified a wrong tree and tried to refine the grammar to prevent it, by 
making a copy of the rules. Also, we changed some rules to disallow 
sequences inside if-then-else and make sequence rule non-ambiguous. The 
end result is something like this:

S::=  |A S // a way to write  S::=A*
A ::= id := id
A ::= if id then A
A ::= if id then A' else A 

A' ::= id := id
A' ::= if id then A' else A'

(At some point we had a useless rule, so we deleted it.)

Note we cannot have multiple statements inside if branches. We therefore 
looked at what a grammar would need, to allow building ASTs with 
sequences inside if-then-else. It would add a case for blocks, like this:

A ::= { S }
A' ::= { S }

We could factor out some common definitions (e.g. define A in terms of A'), 
but that is not important for this problem.



Formalizing and Automating 
Recursive Descent: LL(1) Parsers



Task: Rewrite Grammar to make it 
suitable for recursive descent parser

• Assume the priorities of operators as in Java

expr ::= expr (+|-|*|/) expr
| name | `(’ expr `)’

name ::= ident



Grammar vs Recursive Descent Parser

expr ::= term termList
termList ::= + term termList

|  - term termList
| 

term ::= factor factorList
factorList ::= * factor factorList

| / factor factorList
| 

factor ::= name | ( expr )
name ::= ident

def expr = { term; termList }
def termList =
if (token==PLUS) {

skip(PLUS); term; termList
} else if (token==MINUS)

skip(MINUS); term; termList
}

def term = { factor; factorList }

...

def factor =
if (token==IDENT) name
else if (token==OPAR) {
skip(OPAR); expr; skip(CPAR)

} else error("expected ident or )")

Note that the abstract trees we would 

create in this example do not strictly 

follow parse trees.

k1



Rough General Idea

A ::=  B1 ... Bp

| C1 ... Cq

| D1 ... Dr

def A = 
if (token  T1) {

B1 ... Bp

else if (token  T2) {
C1 ... Cq

} else if (token  T3) {
D1 ... Dr

} else error("expected T1,T2,T3")
where:

T1 = first(B1 ... Bp)
T2 = first(C1 ... Cq)
T3 = first(D1 ... Dr)

first(B1 ... Bp) = {a | B1...Bp ... aw }

T1, T2, T3 should be disjoint sets of tokens.



Computing first in the example

expr ::= term termList
termList ::= + term termList

|  - term termList
| 

term ::= factor factorList
factorList ::= * factor factorList

| / factor factorList
| 

factor ::= name | ( expr )
name ::= ident

first(name) = {ident}
first(( expr ) ) = { ( }
first(factor) = first(name)

U first( ( expr ) )
= {ident} U{ ( }
= {ident, ( }

first(* factor factorList) = { * } 

first(/ factor factorList) = { / } 

first(factorList) = { *, / }

first(term) = first(factor) = {ident, ( }

first(termList) = { + , - } 

first(expr) = first(term) = {ident, ( }



Algorithm for first

Given an arbitrary context-free grammar with a 
set of rules of the form X ::= Y1 ... Yn compute 
first for each right-hand side and for each 
symbol.

How to handle

• alternatives for one non-terminal

• sequences of symbols

• nullable non-terminals

• recursion



Rules with Multiple Alternatives

A ::=  B1 ... Bp

| C1 ... Cq

| D1 ... Dr

first(A) =  first(B1... Bp)
U first(C1 ... Cq)
U first(D1 ... Dr)

Sequences

first(B1... Bp) = first(B1) if not nullable(B1)

first(B1... Bp) = first(B1) U ... U first(Bk)

if nullable(B1), ..., nullable(Bk-1) and

not nullable(Bk) or k=p



Abstracting into Constraints

expr ::= term termList
termList ::= + term termList

|  - term termList
| 

term ::= factor factorList
factorList ::= * factor factorList

| / factor factorList
| 

factor ::= name | ( expr )
name ::= ident

expr' = term'
termList' =  {+}

U {-}

term' = factor'
factorList' = {*}

U { / } 

factor' = name' U { ( }
name' = { ident }

recursive grammar: constraints over finite sets: expr' is first(expr)

nullable: termList, factorList
For this nice grammar, there is
no recursion in constraints.
Solve by substitution.



Example to Generate Constraints

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::=  | a

S' = X' U Y' 
X' =

reachable (from S):
productive:
nullable:

terminals: a,b
non-terminals: S, X, Y, Z

First sets of terminals: 
S', X', Y', Z'  {a,b}



Example to Generate Constraints

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::=  | a

S' = X' U Y' 
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

reachable (from S): S, X, Y, Z
productive: X, Z, S, Y
nullable: Z

terminals: a,b
non-terminals: S, X, Y, Z

These constraints are recursive.
How to solve them?

S', X', Y', Z'  {a,b}
How many candidate solutions
• in this case?
• for k tokens, n nonterminals?



Iterative Solution of first Constraints

S'    X'    Y'        Z' 
{}     {}     {}        {}
{}     {b}   {b}     {a}
{b}   {b}  {a,b}   {a}

{a,b} {a,b} {a,b}   {a}
{a,b} {a,b} {a,b}   {a}

S' = X' U Y' 
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

• Start from all sets empty.
• Evaluate right-hand side and 

assign it to left-hand side.
• Repeat until it stabilizes.

1.
2.
3.
4.
5.

Sets grow in each step
• initially they are empty, so they can only grow
• if sets grow, the RHS grows (U is monotonic), and so does LHS
• they cannot grow forever: in the worst case contain all tokens



Constraints for Computing Nullable

• Non-terminal is nullable if it can derive 

S ::= X | Y 
X ::= b | S Y 
Y ::= Z X b | Y b
Z ::=  | a

S' = X' | Y' 
X' = 0 | (S' & Y')
Y' = (Z' & X' & 0) | (Y' & 0)
Z' = 1 | 0

S', X', Y', Z'  {0,1}
0  - not nullable
1  - nullable
|  - disjunction
& - conjunction

S'    X'    Y'    Z' 
0     0     0     0
0     0     0     1
0     0     0     1

1.
2.
3.

again monotonically growing



Computing first and nullable

• Given any grammar we can compute

– for each non-terminal X whether nullable(X)

– using this, the set first(X) for each non-terminal X

• General approach:

– generate constraints over finite domains, 
following the structure of each rule

– solve the constraints iteratively

• start from least elements

• keep evaluating RHS and re-assigning the value to LHS

• stop when there is no more change



Summary: Algorithm for nullable

nullable = {}

changed = true

while (changed) {

changed = false

for each non-terminal X

if ((X is not nullable) and

(grammar contains rule      X ::=  | ...     )

or   (grammar contains rule X ::= Y1 ... Yn | ...

where {Y1,...,Yn}  nullable)

then {

nullable = nullable U {X}

changed = true
}

}



Summary: Algorithm for first

for each nonterminal X:  first(X)={}

for each terminal t:  first(t)={t}

repeat

for each grammar rule X ::= Y(1) ... Y(k)

for i = 1 to k

if i=1 or {Y(1),...,Y(i-1)}  nullable then

first(X) = first(X) U first(Y(i))

until none of first(…) changed in last iteration


