Exercise 1

Consider a language with the following tokens and token classes:

ID ::= letter (letter|digit)* letter OLQ"““I
LT =<) \eﬂe{ Sdigit lext€r
GT ::=">" 7 -
shiftL ::= "<<" @ (‘
shiftR ::=">>" S
N
dot ::="." > S
LP ::="(" t ‘
RP = ")" o)Dvew the aubwdfon for lexical awsiqzed Like s

b) Give a sequence of tokens for the following character sequence,

applying the longest match r J ,

i3
(]ListHListHl m{>>U(FnyLU.|head head

Note that the input sequence contains no space character

PR Y Exercise 2

Find a regular expression that generates all alternating
sequences of 0 and 1 with arbitrary length (including
lengths zero, one, two, ...). For example, the
alternating sequences of length one are 0 and 1, length
two are 01 and 10, length three are 010 and 101. Note
that no two adjacent character can be the same in an

alternating sequence. s
oto)* | 1 (oV* | @oy | (1)

(op)* 0" | (10)*47
by
A utownatou >

Exercise 3

a) Describe any algorithm using a single unbounded
integer counter that determines if a string consists of
well-nested parentheses

b) Construct a DFA (deterministic finite-state
automaton) for the language L of well-nested
parenthesis of nesting depth at most 3. For example,

e, ()(), (0(()) and (()())()() should be in L,
but not (((()))) nor (()(()(()))), nor () .

((
PC%/@

\’@Q) (

Exercise 4

Find two equivalent states in the automaton, and merge them to produce a
smaller automaton that recognizes the same language. Repeat until there
are no longer equivalent states.

Recall that the general algorithm for minimizing finite automata works in
reverse. First, find all pairs of inequivalent states. States X, Y are inequivalent
if X is final and Y is not, or (by iteration) if and and X’ and Y’ are
inequivalent. After this iteration ceases to find new pairs of inequivalent
states, then X, Y are equivalent, if they are not inequivalent.

< N X W
< N xwDH o

Exercise 5

Let tail be a function that returns all the symbols of a string except
the last one. For example

tail(lmama)=mam
tail is undefined for an empty string. If L, < A*, then TAIL(L,)
applies the function to all non-empty words in L,, ignoring ¢ if it is
inL,: TAIL(L,) ={v eA* | da e A.va e L}

TAIL({aba,aaaa,bb, €}) = {ab,aaa,b}
L(r) denotes the language of a regular expressionr. Then Y% \

TAIL(L(abba|ba*|ab*)) = L(ba*|ab*|¢) >O//f
Tasks: {9/3<.I(q,)€F §= P
e Prove thatif language L, is regular, then so is TAIL(L,)

e Give an algorithm that, given a regular expression r for L,,
computes a regular expression rtail(r) for language TAIL(L,)

Exercise 5 - solution

* You can first construct a regular expression or an automaton
(whichever is convenient for you), and then convert one
representation to the other using the standard algorithms.

* Alternatively, it is possible to define both regular expression
and automata for tail(L) directly from the regular
expression/automata of L

Approach |

a) First construct an automaton for tail(L)
If DFA for Lis (%, Q, qq, 0, F) then
DFA for tail(L) is (£, Q, qg, 5, F")

where
F'={ql|3ce€Zdb(qrc)€EF}

b) Convert the automaton for tail(L) to a regular expression

Exercise 5 - solution
e Approach |l

— First construct a regular expression for tail(L) using the following
construction

exail (Vo | Yp) <
vitail (V) I vtail (¥2)

Yoil (v, ¥2) rodail (Y2) | Tinolleble (o)
©tTo! 2)=
e b e, wait (¥2) sallable ()
‘ \"l‘c.:\(Y'g_\s
o | ((-6) :\"?"1‘0:‘\ (r)
tail ((@®Y)= ooV

— Convert the regular expression to an automata

Exercise 6. Given NFA A, find first(L(A))
SK (P

e Compute the set of first symbols of words accepted
by the following non-deterministic finite state
machine with epsilon transitions:

e Describe an algorithm that solves this problem given
a given NFA

More Questions

e Find automaton or regular expression for:

— Any sequence of open and closed parentheses of
even length?

— as many digits before as after decimal point?

— Sequence of balanced parentheses
((()) () -balanced
())(() - not balanced

— Comment as a sequence of space,LF, TAB, and
comments from // until LF

— Nested comments like /* ... /* */ ... */

Automaton that Claims to Recognize
{a"b" | n>=0}
Make the automaton deterministic
Let the resulting DFA have K states, |Q|=K
Feed it a, aa, aaa, Let g, be state after reading a!

qOI q]_l q21 cee qK
This sequence has length K+1 -> a state must repeat

di = Gisp p>0
Then the automaton should accept a'*Pb™*P .
But then it must also accept
ai bi+p
because it is in state after reading a' as after a'*P.
So it does not accept the given language.

Limitations of Regular Languages

Every automaton can be made deterministic
Automaton has finite memory, cannot count

Deterministic automaton from a given state
oehaves always the same

f a string is too long, deterministic automaton
will repeat its behavior

Pumping Lemma

If L is a regular language, then there exists a
positive integer p (the pumping length) such
that every string s € L for which [s/ > p, can be
partitioned into three pieces, s = x y z, such that

* [yl >0
* [xy[<p
e Vi20.xyze L

Let's try again: { a"b" | n>=0}

Automata are Limited

Let us use grammars!

