Exercise

Convert the following NFAs to deterministic finite automata.
a)

Automated Construction of Lexers

- let $r_{1}, r_{2}, \ldots, r_{n}$ be regular expressions for token classes

$$
\begin{aligned}
& \text { - <ID: a }\left(a|0| 1 \mid _\right)^{*}> \\
& - \text { <INT: }(0 \mid 1)(0 \mid 1)^{*>} \\
& - \text { <OP: + | - > }
\end{aligned}
$$

- consider combined regular expression: $\left(r_{1}\left|r_{2}\right|\right.$
$\left.\ldots \mid r_{n}\right)$
a (a $\left.0|1| _\right)^{*}\left|(0 \mid 1)(0 \mid 1)^{*}\right|(+\mid-)$

Automated Construction of Lexers

- Convert the regular expression to automaton

- For each accepting state of r_{i} specify the token class i being recognized

Automated Construction of Lexers

- Convert the regular expression to automaton

- For each accepting state of r_{i} specify the token class i being recognized

Automated Construction of Lexers

- Eliminate epsilon transitions and determinize
- Minimize the resulting automaton to reduce its size

$\operatorname{From}\left(r_{1}\left|r_{2}\right| \ldots \mid r_{n}\right)$ to a Lexer

- Longest match rule: remember last token and input position for a last accepted state
- When no accepting state can be reached (effectively: when we are in a trap state)
- revert position to last accepted state
- return last accepted token
- Why can't we simply use $\left(r_{1} \mid r_{2} / \ldots / r_{n}\right)^{*}$?

Example

- Tokenize the following
- a10110+0110-a0_10 $\uparrow \quad \uparrow \uparrow \uparrow \uparrow \uparrow{ }^{-}{ }_{-}$

Exercise

Build lexical analyzer for the following two tokens using longest match. The first token class has a higher priority:
binaryDigit ::=(z|1)*
ternaryDigit ::= (0|1|2)*

1111z1021z1 \rightarrow
binaryDigit: $1111 z 1$
ternaryDigit: 021
binaryDigit: z1

Realistic Exercise: Integer Literals of

Scala

- Integer literals are in three forms in Scala: decimal, hexadecimal and octal. The compiler discriminates different classes from their beginning.
- Decimal integers are started with a non-zero digit.
- Hexadecimal numbers begin with 0x or OX and may contain the digits from 0 through 9 as well as upper or lowercase digits from A to F.
- If the integer number starts with zero, it is in octal representation so it can contain only digits 0 through 7.
- I or L at the end of the literal shows the number is Long.
- Draw a single DFA that accepts all the allowable integer literals.
- Write the corresponding regular expression.

Exercise

- Let L be the language of strings over $\{<,=\}$ defined by regexp (<|=| <====*). That is, L contains $<,=$, and words $<={ }^{n}$ for $n>=3$.
- Construct a DFA that accepts L
- Describe how the lexical analyzer will tokenize the following inputs.

1) <=====
2) $==<==<==<==<==$
3) <=====<

Automata to Regular Expressions

- Every path in the automata corresponds to a RE

RE: a
RE: ab

- $R_{p q}^{X}$: RE corresponding to all paths from state ' p ' to state ' q ' that goes through only states in ' X '
- $R_{01}^{\emptyset}=\mathrm{a}$
- $R_{01}^{2}=\mathrm{ba}$

Automata to Regular Expressions

- $R_{p q}^{X}=R_{p q}^{X-\{u\}}+R_{p u}^{X-\{u\}}\left(R_{u u}^{X-\{u\}}\right)^{*} R_{u q}^{X-\{u\}}$
- $R_{p q}^{\emptyset}=a_{1}+a_{2}+\cdots+a_{n}, \delta\left(p, a_{i}\right)=q$
- $R_{p p}^{\emptyset}=a_{1}+a_{2}+\cdots+a_{n}+\epsilon$
- $R_{s f}^{Q}$ is the required regular expression

Automata to Regular Expressions

$$
\begin{gathered}
0^{*}+0^{*} 1\left(10^{*} 1\right)^{*} 10^{*} \\
+0^{*} 1\left(10^{*} 1\right)^{*} 0\binom{1^{*}}{+0\left(10^{*} 1\right)^{*} 0}^{*} \\
0\left(10^{*} 1\right)^{*} 10^{*}
\end{gathered}
$$

- $R_{00}^{\{0,1,2\}}=R_{00}^{\{0,1\}}+R_{02}^{\{0,1\}}\left(R_{22}^{\{0,1\}}\right)^{*} R_{20}^{\{0,1\}}$
- $R_{00}^{\{0,1\}}=R_{00}^{\{0\}}+R_{01}^{\{0\}}\left(R_{11}^{\{0\}}\right)^{*} R_{10}^{\{0\}} \quad 0^{*}+0^{*} 1\left(10^{*} 1\right)^{*} 10^{*}$
- $R_{00}^{\{0\}}=0^{*}$

Exercise

- Convert the following automaton to RE

First Half of a Regular Language

Let L be a language. Define half(L) to be $\{x \mid$ for some y such that $|x|=|y|, x y$ is in $L\}$.
That is, half(L) is the set of first halves of strings in L. Prove that if L is regular then so is half(L$)$.

More Questions

- For which of the following languages can you find an automaton or regular expression:
- Sequence of open or closed parentheses of even length? E.g. (), ((,)), ()))(, ... \cdots Eyes
- as many digits before as after decimal point?
- Sequence of balanced parentheses
((()) ()) - balanced
()) (() -not balanced
- Comments from // until LF

- Nested comments like /* .../* */ ... */ oo No

Proof that $\left\{a^{n} b^{n} \mid n>=0\right\}$ is not Regular

Say there exists a DFA with K states, i.e, $|\mathrm{Q}|=\mathrm{K}$
Feed it $a, ~ a a, ~ a a a, ~ ~ L e t ~ q_{i}$ be state after reading a^{i}

$$
q_{0}, q_{1}, q_{2}, \ldots, q_{k}
$$

This sequence has length $\mathrm{K}+1$-> atleast one state must repeat

$$
q_{i}=q_{i+p} \quad p>0
$$

Then the automaton should accept $\mathrm{a}^{\mathrm{i}+\mathrm{p}} \mathrm{b}^{i+p}$.
But then it must also accept

$$
a^{i} b^{i+p}
$$

because reading a^{i} leads to the same state as a^{i+p}.
So it does not accept the given language.

Pumping Lemma

If L is a regular language, then there exists a positive integer p (the pumping length) s.t. for every string $s \in L,|s| \geq p$, there exists a partition of s into three pieces, $s=x y z$,

- $|y|>0$
- $|x y| \leq p$
such that $\forall i \geq 0 . x y^{i} z \in L$

Pumping Lemma as a Game

- Choose a ' p '
- Pick a $\sin L,|s|>=p$
- Split s as xyz s.t. $|y|>0$,

$$
|x z|<=p
$$

- Find an i s.t. $x y^{i} z$ not in L

Limitations of Regular Languages

- Every automaton can be made deterministic
- Automaton has finite memory, cannot count
- If a string is too long, the automaton will repeat its behavior

