
Exercise



Automated Construction of Lexers

• let r1, r2, ..., rn be regular expressions for token 
classes
– <ID: a ( a | 0 | 1 | _)*>

– <INT: (0 | 1) (0 | 1)*>

– <OP:  + | - >

• consider combined regular expression:  (r1 | r2 | 
... | rn )

a ( a | 0 | 1 | _)* | (0 | 1) (0 | 1)* | (+ | -)



Automated Construction of Lexers

• Convert the regular expression to automaton

• For each accepting state of ri specify the token 
class i being recognized
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Automated Construction of Lexers

• Convert the regular expression to automaton

• For each accepting state of ri specify the token 
class i being recognized
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Automated Construction of Lexers

• Eliminate epsilon transitions and determinize

• Minimize the resulting automaton to reduce its 
size
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From (r1|r2|...|rn ) to a Lexer

• Longest match rule: remember last token and 
input position for a last accepted state

• When no accepting state can be reached 
(effectively: when we are in a trap state)

– revert position to last accepted state

– return last accepted token

• Why can’t we simply use (r1|r2|...|rn )* ?



Example

• Tokenize the following

– a10110+0110-a0_10_
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Exercise

Build lexical analyzer for the following two 
tokens using longest match. The first token class  
has a higher  priority:

binaryDigit ::= (z|1)* 

ternaryDigit ::= (0|1|2)* 

1111z1021z1 

binaryDigit: 1111z1   

ternaryDigit: 021

binaryDigit: z1



Realistic Exercise: Integer Literals of 
Scala

• Integer literals are in three forms in Scala: decimal, 
hexadecimal and octal. The compiler discriminates different 
classes from their beginning. 

– Decimal integers are started with a non-zero digit. 

– Hexadecimal numbers begin with 0x or 0X and may 
contain the digits from 0 through 9 as well as upper or 
lowercase digits from A to F. 

– If the integer number starts with zero, it is in octal 
representation so it can contain only digits 0 through 7. 

– l or L at the end of the literal shows the number is Long. 

• Draw a single DFA that accepts all the allowable integer 
literals.

• Write the corresponding regular expression.



Exercise

• Let L be the language of strings over {<, =} 
defined by regexp (<|=| <====*). That is,
L contains <,=, and words <=n for n >= 3.

• Construct a DFA that accepts L

• Describe how the lexical analyzer will tokenize 
the following inputs.

1) <=====

2) ==<==<==<==<==

3) <=====<



Automata to Regular Expressions

• Every path in the automata corresponds to a RE

• 𝑅𝑝𝑞
𝑋 : RE corresponding to all paths from state ‘p’ to 

state ‘q’ that goes through only states in ‘X’

– 𝑅01
∅ = a

– 𝑅01
2 = ba

0 1
a RE: a

b 2 a
RE: ab



Automata to Regular Expressions

• 𝑅𝑝𝑞
𝑋 = 𝑅𝑝𝑞

𝑋 −{𝑢}
+ 𝑅𝑝𝑢

𝑋 − 𝑢
𝑅𝑢𝑢
𝑋 − 𝑢

∗
𝑅𝑢𝑞
𝑋 −{𝑢}

• 𝑅𝑝𝑞
∅ = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 , 𝛿 𝑝, 𝑎𝑖 = 𝑞

• 𝑅𝑝𝑝
∅ = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑛 + 𝜖

• 𝑅𝑠𝑓
𝑄

is the required regular expression



Automata to Regular Expressions

• 𝑅00
{0,1,2}

= 𝑅00
{0,1}

+ 𝑅02
0,1

𝑅22
0,1

∗
𝑅20
{0,1}

• 𝑅00
{0,1}

= 𝑅00
{0}

+ 𝑅01
0

𝑅11
0

∗
𝑅10
{0}

• 𝑅00
{0}

= 0∗

• ….

0∗ + 0∗1 10∗1 ∗10∗

0∗ + 0∗1 10∗1 ∗10∗

+0∗1 10∗1 ∗0
1∗

+0 10∗1 ∗0

∗

0 10∗1 ∗10∗



Exercise

• Convert the following automaton to RE



First Half of a Regular Language

Let L be a language. Define half(L) to be 

{x | for some y such that |x| = |y|, xy is in L} .

That is, half(L) is the set of first halves of strings 
in L. Prove that if L is regular then so is half(L).



More Questions

• For which of the following languages can you 
find an automaton or regular expression:

– Sequence of open or closed parentheses of even 
length? E.g. (), ((, )), )()))(, …

– as many digits  before as after decimal point?

– Sequence of balanced parentheses
( ( () )  ()) - balanced
( ) ) ( ( )  - not balanced

– Comments from // until LF

– Nested comments like     /*  ... /*   */  … */

yes

No

No

Yes

No



Proof that  { anbn | n >= 0 } is not 
Regular

Say there exists a DFA with K states, i.e, |Q|=K

Feed it a, aa, aaa, …. Let qi be state after reading ai

q0 , q1 , q2 , ... , qK

This sequence has length K+1 -> atleast one state must 
repeat
qi = qi+p p > 0

Then the automaton should accept ai+pbi+p .

But then it must also accept

ai bi+p

because reading ai leads to the same state as ai+p .

So it does not accept the given language.



Pumping Lemma

If L is a regular language, then there exists a 
positive integer p (the pumping length) s.t. for 
every string s  L ,|s| ≥ p, there exists a 
partition of s into three pieces, s = x y z,

• |y| > 0

• |xy| ≤ p

such that ∀i ≥ 0. xyiz  L



Pumping Lemma as a Game

• Pick a s in L, |s|>= p

• Find an i s.t. xyiz not in L

• Choose a ‘p’

• Split s as xyz s.t. |y|>0, 
|xz| <=p

Let’s try again: { anbn | n >= 0 }



Limitations of Regular Languages

• Every automaton can be made deterministic

• Automaton has finite memory, cannot count

• If a string is too long, the automaton will 
repeat its behavior


