Exercise

Convert the following NFAs to deterministic finite automata.

Automated Construction of Lexers

e letr, r,, ..., r,be regular expressions for token

classes

—<ID:a(a 0| 1])*
— <INT: (0] 1) (0 | 1)*>
— <OP: +|->

e consider combined regular expression: (r; | r, |

o lr)
a(alOol1][)*[(@]1)O@]1)*[(+]-)

Automated Construction of Lexers

e Convert the regular expression to automaton

e For each accepting state of r, specify the token
class i being recognized

Automated Construction of Lexers

e Convert the regular expression to automaton

e For each accepting state of r, specify the token
class i being recognized

Automated Construction of Lexers

e Eliminate epsilon transitions and determinize

e Minimize the resulting automaton to reduce its
Size

From (r,|r,]|...]r) to a Lexer

e Longest match rule: remember last token and
input position for a last accepted state

e When no accepting state can be reached
(effectively: when we are in a trap state)
— revert position to last accepted state
— return last accepted token

e Why can’t we simply use (r,[r,]...[r,)" ?

Example

e Tokenize the following

— 010110+0110-g0 10_
! R !

Exercise

Build lexical analyzer for the following two
tokens using longest match. The first token class

has a higher priority:
binaryDigit ::= (z]1)”
ternaryDigit ::= (0]1]2)"

11112102121 -

binaryDigit: 1111z1
ternaryDigit: 021
binaryDigit: z1

Realistic Exercise: Integer Literals of
Scala

e |nteger literals are in three forms in Scala: decimal,
hexadecimal and octal. The compiler discriminates different
classes from their beginning.

— Decimal integers are started with a non-zero digit.

— Hexadecimal numbers begin with Ox or 0X and may
contain the digits from 0 through 9 as well as upper or
lowercase digits from A to F.

— If the integer number starts with zero, it is in octal
representation so it can contain only digits O through 7.

— | or L at the end of the literal shows the number is Long.

e Draw a single DFA that accepts all the allowable integer
literals.

e Write the corresponding regular expression.

Exercise

e Let L be the language of strings over {<, =}
defined by regexp (<]|=]| <====%*). That is,
L contains <,=, and words <=" for n >= 3.

e Construct a DFA that accepts L

e Describe how the lexical analyzer will tokenize
the following inputs.

Automata to Regular Expressions

e Every path in the automata corresponds to a RE

0 a {1 RE: a
RE: ab

o R{fq : RE corresponding to all paths from state ‘p’ to
state ‘q’ that goes through only states in ‘X’
- Rp; = a
- R(z)l - ba

Automata to Regular Expressions

X — X - X -{u}\" X -
Rz)o(q — R {u} 1 Rpu {u} (R {u}) R {u}

pq uu uq
ROy =a1+a,++a,,6(pa;) =q
RO, =a,+a,++a,+e

RSQf is the required regular expression

Automata to Regular Expressions

0* + 0*1(10*1)*10*
*k *k *k 1*)
+0*1(10*1) 0(+0(10*1)*0)
0(10*1)*10*

0,1,2} _ {0,1} (0,1} { »{0,1}\" {0,1}
Roo = Ryo ~ + Rp; (Rzz) Ry

0,1 0 0 0}\" {0 £ 1 AN A (v
Réo ' = R({)o} +Ré1} (RL}) Rio} 0"+ 071(1071)*10

R =0

Exercise

e Convert the following automaton to RE

First Half of a Regular Language

Let L be a language. Define half(L) to be

{x | for some y such that |x

= |y|, xyisinL}.

That is, half(L) is the set of first halves of strings
in L. Prove that if L is regular then so is half(L).

More Questions

e For which of the following languages can you
find an automaton or regular expression:

— Sequence of open or closed parentheses of even

length? E.g. (), ((,)), JO))(, o -
— as many digits before as after decimal point;,;?O

— Sequence of balanced parentheses

((()) () -balanced oo
())(()

- not balanced

— Comments from // until LF °°O

— Nested comments like /* ... /* */ ..*/ ooo

Proof that {a"b" | n>=0}is not

Regular

Say there exists a DFA with K states, i.e, |Q|=K
Feed it a, aa, aaa, Let g, be state after reading a!
qOI q]_l q21 cee qK

This sequence has length K+1 -> atleast one state must
repeat

Q; = Qi p>0
Then the automaton should accept a'*Pb™*P .
But then it must also accept
ai bi+p
because reading a' leads to the same state as a'*?.
So it does not accept the given language.

Pumping Lemma

If L is a regular language, then there exists a
positive integer p (the pumping length) s.t. for
every string s € L, |s| =2 p, there exists a
partition of s into three pieces, s =xy z,

* [yl >0
* [xy[<p
such thatVi20. xy'z € L

Pumping Lemma as a Game

e Choose a ‘p’
e PickasinlL, |s|>=p
e Splitsasxyzs.t. |y]|>0,
|xz| <=p

e Findanis.t. xy’z notin L

Let’s try again: {a"b" | n>=0}

Limitations of Regular Languages

e Every automaton can be made deterministic
e Automaton has finite memory, cannot count

e If a string is too long, the automaton will
repeat its behavior

