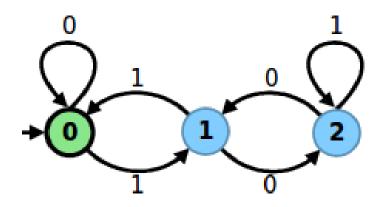
Proving correctness of automata for $\{x \mid x \% 3 = 0, x \in \{0,1\}^*\}$

• Show that the following automaton accepts all binary strings w divisible by 3



- Induction over |w|
- Claim: $\forall w \in \{0,1\}^*, (w \% 3 = i) \Rightarrow \hat{\delta}(s_0, w) = s_i$
- Base case, |w| = 0 i.e, $w = \epsilon$,

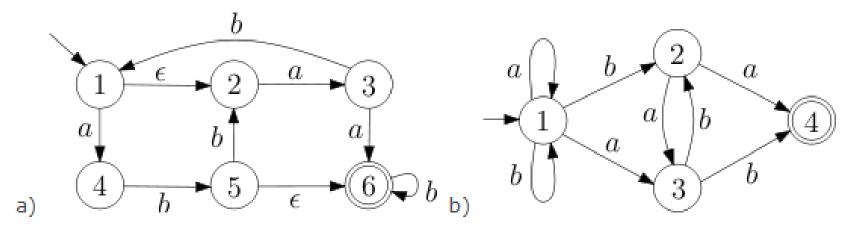
- ($\epsilon \% 3 = 0$) (by def.), $\hat{\delta}(s_0, \epsilon) = s_0$

Proving correctness of automata for $\{x \mid x \% 3 = 0, x \in \{0,1\}^*\}$

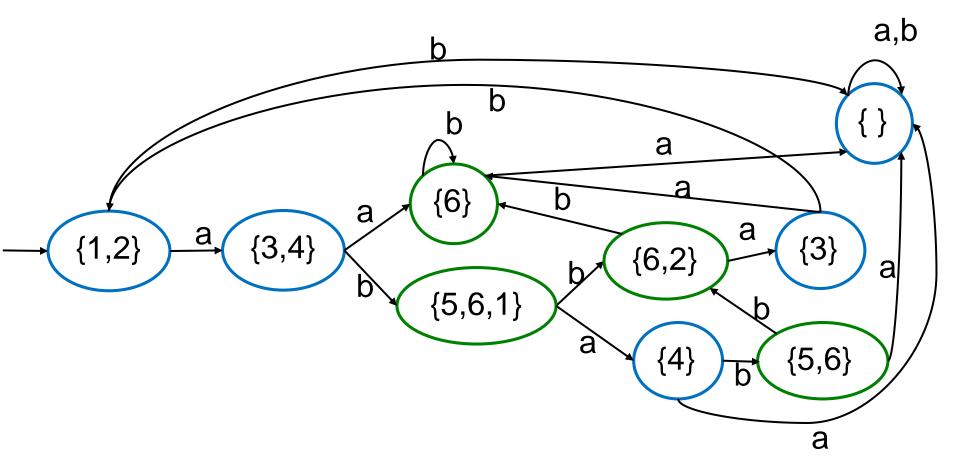
- Inductive step |w| = k + 1,
 - Case(a): w = x0
 - w % 3 = x0 % 3 = (2*(x%3)) % 3
 - If x%3 = 0, w%3 = 0
 - $\hat{\delta}(s_0, w) = \hat{\delta}(s_0, x0) = \delta(\hat{\delta}(s_0, x), 0)$
 - By hypothesis, x % 3 = 0 $\Rightarrow \hat{\delta}(s_0, x) = s_0$
 - Therefore, $\hat{\delta}(s_0, w) = \delta(s_0, 0) = s_0$
 - Hence, when w % 3 = 0, $\hat{\delta}(s_0, w) = s_0$
 - If x%3 = 1, w % 3 = 2
 - By hypothesis, x % 3 = 1 $\Rightarrow \hat{\delta}(s_0, x) = s_1$
 - Therefore, $\hat{\delta}(s_0, w) = \delta(\hat{\delta}(s_0, x), 0) = \delta(s_1, 0) = s_2$
- Similarly for other cases.

Exercise

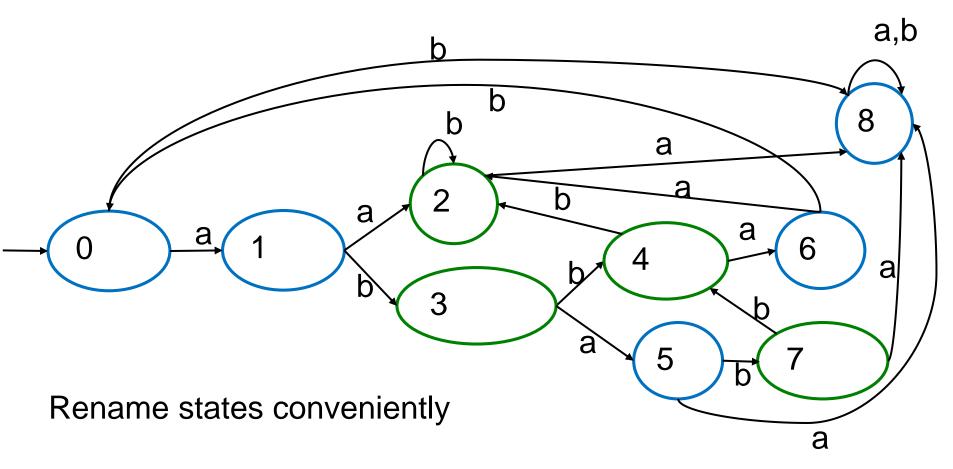
Convert the following NFAs to deterministic finite automata.



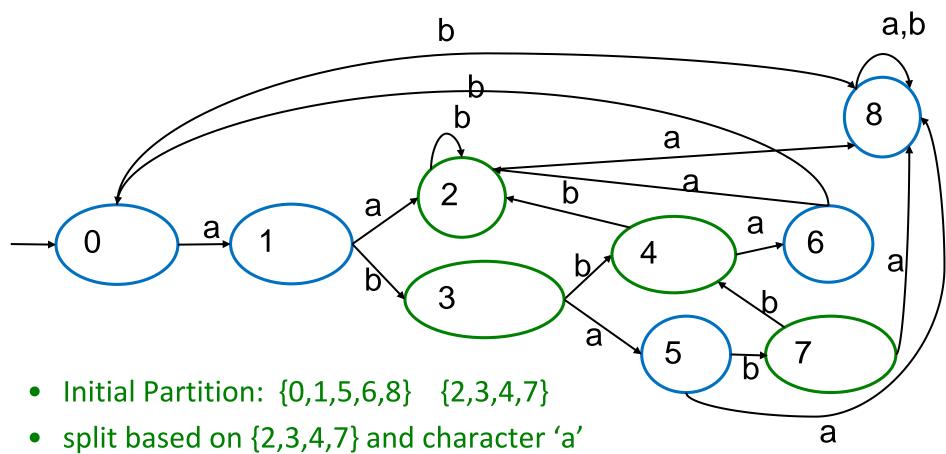
Solution for Exercise (a)



Solution for Exercise (a)



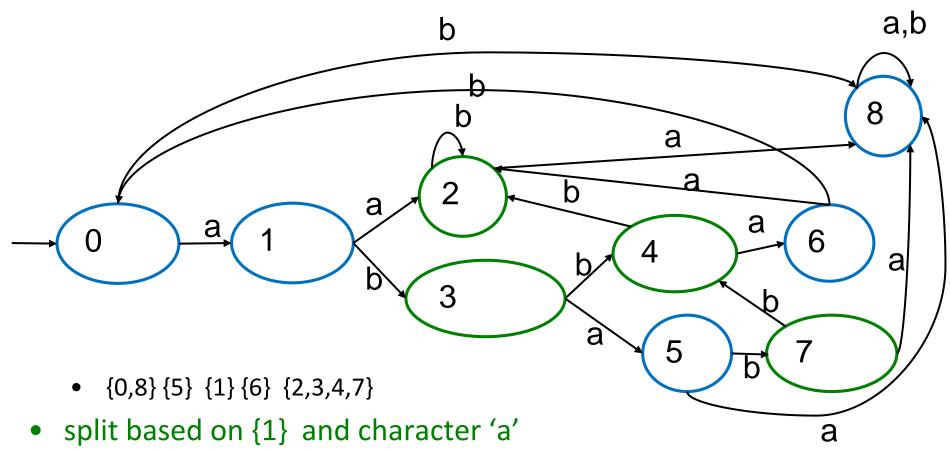
Minimizing solution for (a)



- $\{0,5,8\} \{1,6\} \{2,3,4,7\}$
- split based on {2,3,4,7} and character 'b'

 $- \{0,8\}\{5\}\{1\}\{6\}\{2,3,4,7\}$

Minimizing solution for (a) [Cont.]

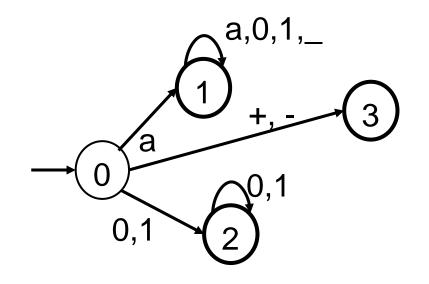


- $\{0\} \{8\} \{5\} \{1\} \{6\} \{2,3,4,7\}$
- split based on ({8}, 'a'), followed by ({4}, 'b') and ({5}, 'a')
 - $\ \{0\} \ \{8\} \ \{5\} \ \{1\} \ \{6\} \ \{2\} \ \{7\} \ \{3\} \ \{4\}$

- let r₁, r₂, ..., r_n be regular expressions for token classes
 - <ID: a (a | 0 | 1 | _)*>
 - <INT: (0 | 1) (0 | 1)*>
 - <OP: + | >

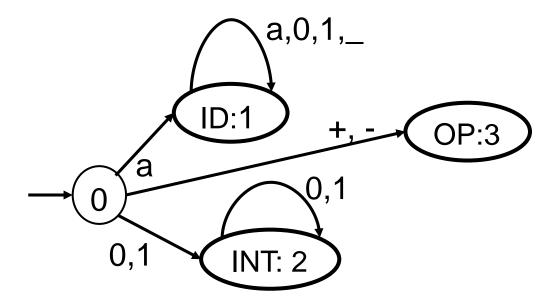
 consider combined regular expression: (r₁ | r₂ | ... | r_n) a (a | 0 | 1 | _)* | (0 | 1) (0 | 1)* | (+ | -)

• Convert the regular expression to automaton



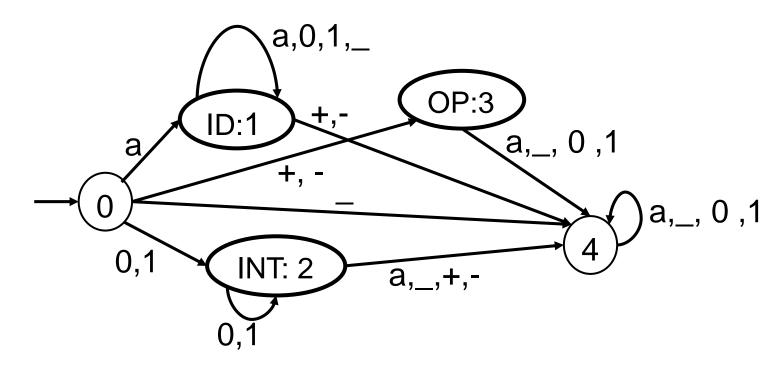
 For each accepting state of r_i specify the token class *i* being recognized

• Convert the regular expression to automaton



 For each accepting state of r_i specify the token class *i* being recognized

- Eliminate epsilon transitions and determinize
- Minimize the resulting automaton to reduce its size



From $(r_1|r_2|...|r_n)$ to a Lexer

- Longest match rule: remember last token and input position for a last accepted state
- When no accepting state can be reached (effectively: when we are in a trap state)
 - revert position to last accepted state
 - return last accepted token
- Why can't we simply use $(r_1|r_2|...|r_n)^*$?

Example

• Tokenize the following - a10110+0110-a0 10 11 a,0,1,_ OP:3 ,-ID:1 _a,__, 0 ,1 a +, a,_, 0,1 0,1 INT: 2 a,_,+,-

Exercise

Build lexical analyzer for the following two tokens using longest match. The first token class has a higher priority: binaryDigit ::= $(z|1)^*$ ternaryDigit ::= $(0|1|2)^*$

1111z1021z1 →

binaryDigit: 1111z1 ternaryDigit: 021 binaryDigit: z1

Realistic Exercise: Integer Literals of

Scala

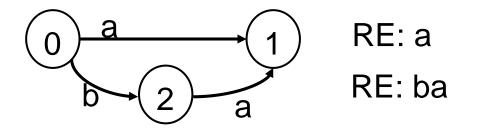
- Integer literals are in three forms in Scala: decimal, hexadecimal and octal. The compiler discriminates different classes from their beginning.
 - Decimal integers are started with a non-zero digit.
 - Hexadecimal numbers begin with 0x or 0X and may contain the digits from 0 through 9 as well as upper or lowercase digits from A to F.
 - If the integer number starts with zero, it is in octal representation so it can contain only digits 0 through 7.
 - I or L at the end of the literal shows the number is Long.
- Draw a single DFA that accepts all the allowable integer literals.
- Write the corresponding regular expression.

Exercise

- Let L be the language of strings over {<, =} defined by regexp (<|=| <====*). That is, L contains <,=, and words <=ⁿ for n >= 3.
- Construct a DFA that accepts L
- Describe how the lexical analyzer will tokenize the following inputs.
 - 1) <====
 - 2) ==<==<===
 - 3) <====<

Automata to Regular Expressions

• Every path in the automata corresponds to a RE



• R_{pq}^X : RE corresponding to all paths from state 'p' to state 'q' that goes through only states in 'X'

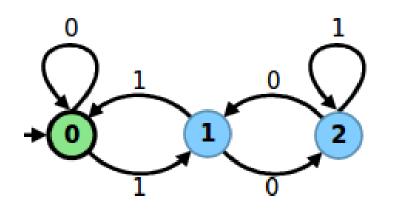
-
$$R_{01}^{\emptyset}$$
 = a
- $R_{01}^{\{2\}}$ = a + ba

Automata to Regular Expressions

•
$$R_{pq}^{X} = R_{pq}^{X-\{u\}} + R_{pu}^{X-\{u\}} \left(R_{uu}^{X-\{u\}}\right)^{*} R_{uq}^{X-\{u\}}$$

- $R_{pq}^{\emptyset} = a_1 + a_2 + \dots + a_n$, $\delta(p, a_i) = q$
- $R_{pp}^{\emptyset} = a_1 + a_2 + \dots + a_n + \epsilon$
- R_{sf}^{Q} is the required regular expression

Automata to Regular Expressions

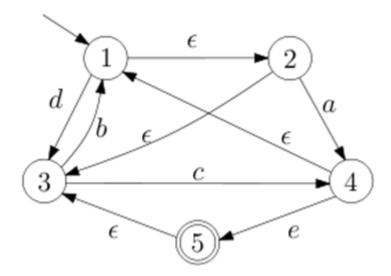


$$0^{*} + 0^{*}1(10^{*}1)^{*}10^{*} \\ + 0^{*}1(10^{*}1)^{*}0 \begin{pmatrix} 1^{*} \\ +0(10^{*}1)^{*}0 \end{pmatrix}^{*} \\ 0(10^{*}1)^{*}10^{*} \end{bmatrix}$$

- $R_{00}^{\{0,1,2\}} = R_{00}^{\{0,1\}} + R_{02}^{\{0,1\}} \left(R_{22}^{\{0,1\}} \right)^* R_{20}^{\{0,1\}}$
- $R_{00}^{\{0,1\}} = R_{00}^{\{0\}} + R_{01}^{\{0\}} \left(R_{11}^{\{0\}} \right)^* R_{10}^{\{0\}} = 0^* + 0^* 1(10^*1)^* 10^*$
- $R_{00}^{\{0\}} = 0^*$
-

Exercise

• Convert the following automaton to RE



First Half of a Regular Language

Let L be a language. Define half(L) to be $\{x \mid for some y such that |x| = |y|, xy is in L\}$. That is, half(L) is the set of first halves of strings in L. Prove that if L is regular then so is half(L).

There are many solutions to the problem.

The following is a tutorial on one good solution to the problem:

www-bcf.usc.edu/~breichar/teaching/2011cs360/half(L)example.pdf

More Questions

- For which of the following languages can you find an automaton or regular expression:
 - Sequence of open or closed parentheses of even length? E.g. (), ((,)),)()))(, ... ••• yes)
 - as many digits before as after decimal point?
 - Sequence of balanced parentheses
 - ((())()) balanced
 - ())(() not balanced
 - Comments from // until LF *** Yes
 - Nested comments like /* ... /* */ ... */ */