Proving correctness of automata for
{x|x%3 = 0,x€{0,1}"}

Show that the following automaton accepts all
binary strings w divisible by 3

Induction over |w]|

Claim: Vw € {0,1}*, (W % 3 = i) = §(sq, W) = s;
Base case, |w| =0i.e, w =€,

- (€% 3 = 0) (by def.), §(sp, €) = s,

Proving correctness of automata for
{x|x%3 = 0,x€{0,1}"}

e Inductive step |w| =k +1,
— Case(a): w=x0
- w%3 =x0%3=(2*(x%3)) % 3
e [fx%3=0, w%3=0
- (59, W) = 8(sp,x0) = 8(6(s9, %), 0)
— By hypothesis, x % 3 = 0 = §(sy, %) = Sg
— Therefore, §(sg, W) = 8(s¢,0) = s,
— Hence, whenw %3 =0, §(sq, W) = s,
o Ifx%3=1, w%3=2
— By hypothesis,x% 3 =1= S(so,x) = 51
— Therefore, §(sp, W) = 5(5(so,x), O) =6(s1,0) = s,

e Similarly for other cases.

Exercise

Convert the following NFAs to deterministic finite automata.

b

Solution for Exercise (a)

Solution for Exercise (a)

Rename states conveniently

Minimizing solution for (a)

b
b
b \

0

GO = a3 o,
s ara

e |Initial Partition: {0,1,5,6,8} {2,3,4,7}

e split based on {2,3,4,7} and character ‘a’
- {0,5,8} {1,6} {2,3,4,7}

e split based on {2,3,4,7} and character ‘b’
- {0,8} {5} {1}{6} {2,3,4,7}

a

Minimizing solution for (a) [Cont.]

‘UIT °
| %
©>

D
. {0,8}{5} {1}{6} {2,3,4,7) -

e split based on {1} and character ‘a’ a
— {0} {8} {5} {1}{6} {2,3,4,7}

e split based on ({8}, ‘@’), followed by ({4}, ‘b’) and ({5}, ‘@’)
— {0} {8} {5} {1} {6} {27} {3} {4}

Automated Construction of Lexers

e letr, r,, ..., r,be regular expressions for token

classes

—<ID:a(a 0| 1])*
— <INT: (0] 1) (0 | 1)*>
— <OP: +|->

e consider combined regular expression: (r; | r, |

o lr)
a(alOol1][)*[(@]1)O@]1)*[(+]-)

Automated Construction of Lexers

e Convert the regular expression to automaton

e For each accepting state of r, specify the token
class i being recognized

Automated Construction of Lexers

e Convert the regular expression to automaton

e For each accepting state of r, specify the token
class i being recognized

Automated Construction of Lexers

e Eliminate epsilon transitions and determinize

e Minimize the resulting automaton to reduce its
Size

From (r,|r,]|...]r) to a Lexer

e Longest match rule: remember last token and
input position for a last accepted state

e When no accepting state can be reached
(effectively: when we are in a trap state)
— revert position to last accepted state
— return last accepted token

e Why can’t we simply use (r,[r,]...[r,)" ?

Example

e Tokenize the following

— 010110+0110-g0 10_
! R !

Exercise

Build lexical analyzer for the following two
tokens using longest match. The first token class

has a higher priority:
binaryDigit ::= (z]1)”
ternaryDigit ::= (0]1]2)"

11112102121 -

binaryDigit: 1111z1
ternaryDigit: 021
binaryDigit: z1

Realistic Exercise: Integer Literals of
Scala

e |nteger literals are in three forms in Scala: decimal,
hexadecimal and octal. The compiler discriminates different
classes from their beginning.

— Decimal integers are started with a non-zero digit.

— Hexadecimal numbers begin with Ox or 0X and may
contain the digits from 0 through 9 as well as upper or
lowercase digits from A to F.

— If the integer number starts with zero, it is in octal
representation so it can contain only digits O through 7.

— | or L at the end of the literal shows the number is Long.

e Draw a single DFA that accepts all the allowable integer
literals.

e Write the corresponding regular expression.

Exercise

e Let L be the language of strings over {<, =}
defined by regexp (<]|=]| <====%*). That is,
L contains <,=, and words <=" for n >= 3.

e Construct a DFA that accepts L

e Describe how the lexical analyzer will tokenize
the following inputs.

Automata to Regular Expressions

e Every path in the automata corresponds to a RE

0 a {1 RE: a
RE: ba

o R{fq : RE corresponding to all paths from state ‘p’ to
state ‘g’ that goes through only states in ‘X’

- Rp; = a

— R({)Zl}=a+ba

Automata to Regular Expressions

X — X - X -{u}\" X -
Rz)o(q — R {u} 1 Rpu {u} (R {u}) R {u}

pq uu uq
ROy =a1+a,++a,,6(pa;) =q
RO, =a,+a,++a,+e

RSQf is the required regular expression

Automata to Regular Expressions

0* + 0*1(10*1)*10*
*k *k *k 1*)
+0*1(10*1) 0(+0(10*1)*0)
0(10*1)*10*

0,1,2} _ {0,1} (0,1} { »{0,1}\" {0,1}
Roo = Ryo ~ + Rp; (Rzz) Ry

0,1 0 0 0}\" {0 £ 1 AN A (v
Réo ' = R({)o} +Ré1} (RL}) Rio} 0"+ 071(1071)*10

R =0

Exercise

e Convert the following automaton to RE

First Half of a Regular Language

Let L be a language. Define half(L) to be
{x | for some y such that [x| = |y/[, xyisin L}.

That is, half(L) is the set of first halves of strings in L.
Prove that if L is regular then so is half(L).

There are many solutions to the problem.
The following is a tutorial on one good solution to the problem:
www-bcf.usc.edu/~breichar/teaching/2011cs360/half(L)example.pdf

More Questions

e For which of the following languages can you
find an automaton or regular expression:

— Sequence of open or closed parentheses of even

length? E.g. (), ((,)), JO))(, o -
— as many digits before as after decimal point;,;?O

— Sequence of balanced parentheses

((()) () -balanced oo
())(()

- not balanced

— Comments from // until LF °°O

— Nested comments like /* ... /* */ ..*/ ooo

