Automating Construction of Lexers



Example in javacc

TOKEN: {

<IDENTIFIER: <LETTER> (<LETTER> | <DIGIT> | " _")* >
<INTLITERAL: <DIGIT> (<DIGIT>)* >

<LETTER: ["a"-"z"] | ["A"-"Z"]>

<DIGIT: ["0"-"9"]>

J
SKIP: {

IV

--> get automatically generated code for lexer!

But how does javacc do it?



Regular Expression

® 3
e rlr2

e (r1]r2)

A Recap:
Simple RE to Programs

Code

if (current=a) next else error

(code forrl);
(code for r2)

if (current in first(rl))
code forrl

else
code for r2

while(current in first(r))
code forr



Regular Expression to Programs

e How can we write a lexer for (a*b | a) ?

® 3aaab Vs aaaaa

Reqular
EXxpression

Finite state
machine (FSA)

Program




Finite Automaton (Finite State Machine)

0 €O XXXQ,

do € 0,
b ab FQQ

R ' qo € Q,
_' o q1 €0

o = { (Clo; a, Ch): (QO» a, CIO)

e X -alphabet (CI1; a, ql): ((h; b' ql)}
e (Q - states (nodes in the graph)

° A= (Z/ Q/ qo: 6; F)

* (,- initial state (with ->' sign in drawing)
e O - transitions (labeled edges in the graph)
e F-final states (double circles)



Numbers with Decimal Point

digit

digit digit* . digit digit™

What if the decimal part is optional?



Automata Tutor
WWWw.automatatutor.com

e A website for learning automata
e \We have posted some exercises for you to try.
e Create an account for yourself

e Register to the course
— Course Id: 23EPFL-CL
— Password: GHL2AQ3|



Exercise

e Design a DFA which accepts all strings in {a, b}* that has an
even length

ab

o @

ab



Exercise

e Construct a DFA that recognizes all strings over {a, b} that
contain "aba" as a substring




Exercise

e Construct an automaton that recognizes all strings over { a,b}
that contain "aba" as a substring and is of even length
— Construct the product automaton of the following

ab

— States: Q; X Q, = {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3) }
— Transitions: Foreach a € X,

5((511» qz2), a) = (5(511» a),5(qz, a))

Eg. 5((0,0),a) = (1,1), §((0,0),b) = (1,0),5((1,1),b) = (0,2), ...
— Start state: (0,0), Final state: (0,3)



Solution: the product automaton

(1,0) b 02
(A — a

. (0.1)



Exercise

e Design a DFA which accepts all the numbers written in binary
and divisible by 2. For example, your automaton should
accept the words 0, 10, 100, 110...



Exercise

Design a DFA which accepts all the numbers written in binary
and divisible by 3. For example your automaton should accept
the words 0, 11, 110, 1001, 1100 ...

Can you prove that the automaton accepts language ?

Can you generalize this to any divisor ‘'n’ and any base ‘b’ ?
— Answers are in the next lecture slides



Kinds of Finite State Automata

Deterministic FA (DFA): & is a function : (Q,XZ) » Q
Non-deterministic FA (NFA): 0 could be a relation

In NFA there is no unique next state. We have a set of
possible next states.



Undefined Transitions

ab

O
e i

b
(0 —(1)

e Undefined transitions lead to a sink state from
where no input can be accepted



Epsilon Transitions

ab ab

VR,

e Epsilon transitions: traversing them does not
consume anything (empty word)

e More generally, transitions labeled by a word:
traversing such transition consumes that
entire word at a time



Interpretation of Non-Determinism

e For a given word (string), a path in automaton lead to
accepting, another to a rejecting state

e Does the automaton accept in such case?

— yes, if there exists an accepting path in the automaton
graph whose symbols give that word



Exercise

e Construct a NFA that recognizes all strings over {a,b} that
contain "aba" as a substring

ab ab

\/ \/
©

O



NFA Vs DFA

e For every NFA there exists an equivalent DFA that
accepts the same set of strings

e But, NFAs could be exponentially smaller.

e That is, there are NFAs such that every DFA
equivalent to it has exponentially more number of

states



Exercise

e Construct a NFA and a DFA that recognizes all strings
over {a,b,c} that do not contain all the alphabets a, b
and c.

(let’s start with a regular expression)
— Regular expression: (a|b)* | (b|c)* | (al|c)*
— NFA:




Solution: DFA

— Can you prove that every DFA for this language will have
exponentially more states than the NFA ?

— Hints: Why is every intermediate state necessary ?
— Can you minimize the DFA any further ?



Regular Expressions and Automata

Theorem:

If L is a set of words, it is describable by a
regular expression iff (if and only if) it is the set
of words accepted by some finite automaton.

Algorithms:
e regular expression = automaton (important!)

e automaton -2 regular expression (cool)



Recursive Constructions

e Union

)
» -- 8 -
® G e

e Concatenation



Recursive Constructions

e Star




Exercise: (aa)* | (aaa)*™

e Construct an NFA for the regular expression




NFAs to DFAs (Determinisation)

e keep track of a set of all possible states in
which the automaton could be

e view this finite set as one state of new
automaton



NFA to DFA Conversion

Possible states of the DFA: 2¢

Y {0},...{12}, {0,1}, ...,{0,12}, ...{12, 12},
1,

{{
{0,1,2}...,{0,1,2...,12}}



NFA to DFA Conversion

e Epsilon Closure
e £(0)={0,5,1,2,6}, E(1) ={1}, E(2) =1
e E(q) =1{q116(q,¢6,q1) }

e DFA: (3,29,q5,8', F")

* qo = E(qo)

e §'(q',a) = U{Elqleq’,S(ql,a,qz)}E(QZ)
e F'={q'lqg" €29 q9g'nF = 0}



NFA to DFA Conversion




NFA to DFA Example




Remark: Relations and Functions

e Relation rcBxC
r={... (b,cl), (b,c2),...}
e Corresponding function: f: B -> 2¢
f={...(b{c1,c2}) ... }
f(b)={c | (b,c) er}
e Given a state, next-state function returns the
set of new states

— for deterministic automaton, the set has exactly 1
element



Clarifications

e what happens if a transition on an alphabet ‘a’
is not defined for a state ‘q’ ?

* §'({qha) =0
e §'(Q,a) =0

e Empty set represents a state in the NFA

e |tis atrap/sink state: a state that has self-
loops for all symbols, and is non-accepting.



Running NFA (without epsilons) in

Scala

def o(q : State, a : Char) : Set[States] ={ ... }

def 0'(S : Set[States], a : Char) : Set[States] = {
for (ql <-S, g2 <- 8(ql,a)) yield g2

}

def accepts(input : MyStream[Char]) : Boolean = {

var S : Set[State] = Set(q0) // current set of states
while (linput.EOF) {

val a = input.current

S =0'(S,a) // next set of states

}
I(S.intersect(finalStates).isEmpty)

J



Running NFA in Scala

* Modify this to handle epsilons transitions.

def o(q : State, a : Char) : Set[States] ={ ... }
def 0'(S : Set[States], a : Char) : Set[States] = {
for (q1 <- S, g2 <-0(gl,a))

for(q <- 0(g2, €)) vield g



Minimizing DFAs

e Merge equivalent states.

- qo and gqare equivalent iff there is no
distinguishing string

- 6(q9,2) €F © 6(qy,2) EF
— Corollary of Myhill-Nerode Theorem

e Final and non-final states are not equivalent
as € distinguishes them



Minimizing DFAs: Procedure

e Maintain a partition A of states

e Every set in the partition has a different
behavior i.e, they have a distinguishing string

e States within a partition may or may not be
equivalent

e Initially, we have (F, Q- F)

L))



Minimizing DFAs: Procedure [Cont.]

e Pick any partition P, choose some alphabet ‘a’.

e Split every partition (including P) by
separating the states that has a transition to a
state in P on ‘@’, and those that do not.

e Repeat until no partition can be split. That is,
no choice of P and ‘a” will split any partition

L))



Minimizing DFAs: Procedure

A: {0,2,3,4,6} {1,5}
split based on {0,2,3,4,6}

- A:{0,4,6} {2,3} {1,5}
split based on {2,3}

- A:{0,4,6} {2,3} {1}{5}
split based on {1}

— A:{0,6}{4}{2,3} {1} {5}
split based on {4}

— A:{0,6} {4} {2} {3} {1} {5}



Minimizing DFAs: Procedure

e The minimal DFA is unique (up to
isomorphism)

e Implication of Myhill-Nerode theorem
e fFood For Thought: Can we minimize NFA ?



Properties of Automatons

e Complement:

— Given a DFA A, switch accepting and non-accepting states
in A to obtain the complement automaton A°

- L(A®) = (Z"\ L(4))
— Does not work for NFA
e Intersection:
— Define A’ = (,Qy X Q3,(q95,96),6', FL X F,)

- 6'((q1,92),a) = 6(q1,a) X 8(q4,a)
- L(A") = L(A;) N L(Ay)



Properties of Automatons

Intersection (another approach):

— complement union of complements

- Ay NA, = (A7 U A%)°
Set difference: intersection with complement

- Ay \ Ay = (A1 N 43)

Inclusion: Is L(A,) € L(4,) ?

e emptiness of set difference

e Trueiff A; \ A, does not accept any string. L(A; \ 4,) =0

Equivalence: Is L(A,) = L(4,)?

— two inclusions



Exercise

e Design a DFA which accepts all the numbers written in binary
and divisible by 6. For example your automaton should accept
the words 0, 110 (6 decimal) and 10010 (18 decimal).

— You can construct the product of the following automatons that
accept numbers divisible by 2 and 3

0 1




Solution: Product Automaton

(1.0) | (0,1)

e

% i

0.0) (1,2)
© 2

(1,1) (0,2)




Exercise: first, nullable

e For each of the following languages find the
first set. Determine if the language is nullable.
— (a[b)* (b|d) ((c|ald)* | a*)
Answer:
— First={a, b, d }

— not nullabe, the minimal strings belonging to the
regex are ‘b’ and ‘d’



