Arrays

Using array as an expression, on the right-hand side

$$
\frac{\Gamma \vdash \mathrm{a}: \operatorname{Array}(\mathrm{T}) \quad \Gamma \vdash \mathrm{i}: \operatorname{Int}}{\Gamma \vdash \mathrm{a}[\mathrm{i}]: \mathrm{T}}
$$

Assigning to an array

$$
\frac{\Gamma \vdash \mathrm{a}: \operatorname{Array}(\mathrm{T}) \quad \Gamma \vdash \mathrm{i}: \operatorname{Int}}{\Gamma \vdash \mathrm{e}: \mathrm{T}} \underset{\Gamma \vdash(\mathrm{a}[\mathrm{i}]=\mathrm{e}): \text { void }}{ }
$$

Example with Arrays

def next(a : Array[Int], k : Int) : Int = \{

$$
a[k]=a[a[k]]
$$

\}

Given $\Gamma=\{(\mathrm{a}, \operatorname{Array}(\operatorname{Int})),(\mathrm{k}, \operatorname{Int})\}$, check $\Gamma \vdash \mathrm{a}[\mathrm{k}]=\mathrm{a}[\mathrm{a}[\mathrm{k}]]$: void
$\left.\frac{\Gamma \vdash \mathrm{a}: \operatorname{Array}(\operatorname{Int}) \quad \frac{\Gamma \vdash \mathrm{a}: \operatorname{Array}(\operatorname{Int})}{\Gamma \vdash \mathrm{a}[\mathrm{k}]: \operatorname{Int}} \quad \Gamma \vdash \mathrm{k}: \operatorname{Int}}{\Gamma \vdash \mathrm{a}[\mathrm{a}[\mathrm{k}]]: \operatorname{Int}} \quad \Gamma \vdash \mathrm{a}: \operatorname{Array}(\operatorname{Int}) \quad \Gamma \vdash \mathrm{k}: \operatorname{Int}\right)$

Type Rules (1)

$$
\frac{(\mathrm{x}: \mathrm{T}) \in \Gamma}{\Gamma \vdash \mathrm{x}: \mathrm{T}} \text { variable }
$$

$$
\Gamma \vdash e_{1}: T_{1} \ldots \Gamma \vdash e_{n}: T_{n} \quad \Gamma \vdash f:\left(T_{1} \times \cdots \times T_{n} \rightarrow T\right)
$$

$$
\Gamma \vdash f\left(e_{1}, \ldots, e_{n}\right): T \quad \text { function application }
$$

$$
\frac{\Gamma \vdash e_{1}: \text { Int } \quad \Gamma \vdash e_{2}: \text { Int }}{\Gamma \vdash\left(e_{1}+e_{2}\right): \text { Int }} \text { plus } \frac{\Gamma \vdash e_{1}: \text { String } \quad \Gamma \vdash e_{2}: \text { String }}{\Gamma \vdash\left(e_{1}+e_{2}\right): \text { String }}
$$

$$
\begin{array}{lll}
\Gamma \vdash \mathrm{b}: \text { Boolean } & \Gamma \vdash e_{1}: \mathrm{T} & \Gamma \vdash e_{2}: \mathrm{T} \\
\hline
\end{array}
$$

$$
\Gamma \vdash\left(\mathrm{if}(\mathrm{~b}) e_{1} \text { else } e_{2}\right): \mathrm{T}
$$

$\Gamma \vdash \mathrm{b}$: Boolean $\quad \Gamma \vdash \mathrm{s}$: void
$\Gamma \vdash($ while(b) s): void
while

$$
\frac{(\mathrm{x}, \mathrm{~T}) \in \Gamma \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}
$$

assignment

Type Rules (2)

$$
\begin{aligned}
& \frac{\Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash\{\mathrm{e}\}: \mathrm{T}} \quad \frac{}{\Gamma \vdash\}: \operatorname{void}} \\
& \frac{\Gamma \oplus\left\{\left(x, T_{1}\right)\right\} \vdash\left\{t_{2} ; \ldots ; t_{n}\right\}: \mathrm{T}}{\Gamma \vdash\left\{\operatorname{var} x: T_{1} ; t_{2} ; \ldots ; t_{n}\right\}: \mathrm{T}} \\
& \frac{\Gamma \vdash s_{1}: \operatorname{void} \quad \Gamma \vdash\left\{t_{2} ; \ldots ; t_{n}\right\}: \mathrm{T}}{\Gamma \vdash\left\{s_{1} ; t_{2} ; \ldots ; t_{n}\right\}: \mathrm{T}} \\
& \frac{\Gamma \vdash \mathrm{a}: \operatorname{Array}(\mathrm{T}) \quad \Gamma \vdash \mathrm{i}: \mathrm{Int}}{\Gamma \vdash \mathrm{a}[\mathrm{i}]: \mathrm{T}} \\
& \frac{\Gamma \vdash \mathrm{a}: \operatorname{Array}(\mathrm{T}) \quad \Gamma \vdash \mathrm{i}) \mathrm{Int}}{\Gamma \vdash \mathrm{a}[\mathrm{i}]=\mathrm{e}} \quad \Gamma \vdash \mathrm{e}: \mathrm{T}
\end{aligned} \text { block } \begin{gathered}
\text { array use } \\
\frac{\text { array }}{\text { assignment }}
\end{gathered}
$$

Type Rules (3)

Γ^{c} - top-level environment of class C

$$
\begin{aligned}
& \begin{array}{l}
\text { class } \mathrm{C}\{ \\
\\
\quad \operatorname{var} x: \text { Int; } \\
\\
\text { def } m(p: \text { Int }): \text { Boolean }=\{\ldots\}
\end{array} \\
& \Gamma^{c}=\{(x, \ln t),(m, C x \operatorname{lnt} \rightarrow \text { Boolean })\}
\end{aligned}
$$

$$
\frac{\Gamma \vdash e: C \quad \Gamma^{C} \vdash m: \mathrm{C} \times T_{1} \times \ldots \times T_{n} \rightarrow T_{n+1}}{} \begin{array}{r}
\Gamma \vdash e . m\left(e_{1}, \ldots, e_{n}\right): T_{n+1}
\end{array} \quad \text { method invocation } \quad 1 \leq i \leq n ~\left(T_{i} \quad 10\right.
$$

$$
\frac{\Gamma \vdash \mathrm{e}: \mathrm{C} \quad \Gamma^{C} \vdash \mathrm{f}: \mathrm{T}}{\Gamma \vdash \text { e.f: } \mathrm{T}} \text { field use }
$$

$\frac{\Gamma \vdash \mathrm{e}: \mathrm{C} \quad \Gamma^{C} \vdash \mathrm{f}: \mathrm{T} \quad \Gamma \vdash \mathrm{x}: \mathrm{T}}{\Gamma \vdash(\mathrm{e} . \mathrm{f}=\mathrm{x}): \text { void }}$ field assignment

Does this program type check?

```
class Rectangle {
    var width: Int
    var height: Int
    var xPos: Int
    var yPos: Int
    def area(): Int = {
        if (width > 0 && height > 0)
        width * height
    else 0
    }
    def resize(maxSize: Int) {
        while (area > maxSize) {
        width = width / 2
        height = height / 2
    }
    }
}
```

$$
\Gamma_{0}=\left\{\begin{array}{c}
\mathrm{w}: \text { Int, } \mathrm{h}: \text { Int, } \\
\mathrm{x}: \text { Int, } \mathrm{y}: \text { Int, } \\
\text { area }: \text { Unit } \rightarrow \text { Int, } \\
\text { resize }: \text { Int } \rightarrow \text { Unit }
\end{array}\right\}
$$

Type check: area

Type check: resize

Semantics of Types

- Operational view: Types are named entities
- such as the primitive types (Int, Bool etc.) and explicitly declared classes, traits ...
- their meaning is given by methods they have
- constructs such as inheritance establish relationships between classes
- Mathematically, Types are sets of values
- Int = \{ ..., -2, -1, 0, 1, 2, ... \}
- Boolean $=\{$ false, true $\}$
$-\operatorname{Int} \rightarrow \operatorname{lnt}=\{\mathrm{f}: \operatorname{Int}->\operatorname{lnt} \mid \mathrm{f}$ is computable $\}$

Types as Sets

- Sets so far were disjoint

String
"Richard" "cat"

- Sets can overlap

C represents not only declared C,

SUBTYPING

Subtyping

- Subtyping corresponds to subset
- Systems with subtyping have non-disjoint sets
- $T_{1}<: T_{2}$ means T_{1} is a subtype of T_{2}
- corresponds to $T_{1} \subseteq T_{2}$ in sets of values
- Rule for subtyping: analogous to set reasoning

In terms of sets

$$
\frac{\Gamma \vdash e: T_{1} \quad T_{1}<: T_{2}}{\Gamma \vdash e: T_{2}} \quad \frac{e \in T_{1} \quad T_{1} \subseteq T_{2}}{e \in T_{2}}
$$

Int

Types for Positive and Negative Ints

$$
\begin{aligned}
& \text { Int }=\{\ldots,-2,-1,0,1,2, \ldots\} \\
& \text { Pos }=\{1,2, \ldots\} \quad \text { (not including zero) } \\
& \text { Neg }=\{\ldots,-2,-1\} \quad \text { (not including zero) }
\end{aligned}
$$

$\begin{array}{ll}\text { types: } & \text { Pos <: Int } \\ & \text { Neg }<: \text { Int }\end{array}$
$\frac{\Gamma \vdash \mathrm{x}: \operatorname{Pos} \quad \Gamma \vdash \mathrm{y}: \operatorname{Pos}}{\Gamma \vdash \mathrm{x}+\mathrm{y}: \operatorname{Pos}}$
$\frac{\Gamma \vdash \mathrm{x}: \operatorname{Pos} \quad \Gamma \vdash \mathrm{y}: \operatorname{Neg}}{\Gamma \vdash \mathrm{x} * \mathrm{y}: \mathrm{Neg}}$
$\frac{\Gamma \vdash \mathrm{x}: \operatorname{Pos} \quad \Gamma \vdash \mathrm{y}: \operatorname{Pos}}{\Gamma \vdash \mathrm{x} / \mathrm{y}: \operatorname{Pos}}$
sets: \quad Pos $\subseteq \operatorname{lnt}$ $\mathrm{Neg} \subseteq \mathrm{Int}$

$$
\begin{aligned}
& \frac{x \in \operatorname{Pos} \quad y \in \operatorname{Pos}}{x+y \in \operatorname{Pos}} \\
& \frac{x \in \operatorname{Pos} \quad y \in \operatorname{Neg}}{x^{*} y \in \operatorname{Neg}} \\
& \frac{x \in \operatorname{Pos} \quad y \in \operatorname{Pos}}{x / y \in \operatorname{Pos} \quad \text { (} x / y \text { well defined) }}
\end{aligned}
$$

Rules for Neg, Pos, Int

$$
\frac{\Gamma \vdash \mathrm{x}: \operatorname{Pos} \quad \Gamma \vdash \mathrm{y}: \mathrm{Neg}}{\Gamma \vdash \mathrm{x}+\mathrm{y}: ? ? ?}
$$

$$
\frac{\Gamma \vdash \mathrm{x}: \operatorname{Pos} \Gamma \vdash \mathrm{y}: \mathrm{Neg}}{\Gamma \vdash \mathrm{x} * \mathrm{y}: ? ? ?}
$$

$$
\frac{\Gamma \vdash \mathrm{x}: \operatorname{Pos} \quad \Gamma \vdash \mathrm{y}: \text { Int }}{\Gamma \vdash \mathrm{x}+\mathrm{y}: ? ? ?}
$$

$$
\frac{\Gamma \vdash \mathrm{x}: \operatorname{Pos} \quad \Gamma \vdash \mathrm{y}: \operatorname{Int}}{\Gamma \vdash \mathrm{x} * \mathrm{y}: ? ? ?}
$$

More Rules

$$
\begin{aligned}
& \frac{\Gamma \vdash \mathrm{x}: \mathrm{Neg} \quad \Gamma \vdash \mathrm{y}: \mathrm{Neg}}{\Gamma \vdash \mathrm{x} * \mathrm{y}: \operatorname{Pos}} \\
& \frac{\Gamma \vdash \mathrm{x}: \mathrm{Neg} \quad \Gamma \vdash \mathrm{y}: \mathrm{Neg}}{\Gamma \vdash \mathrm{x}+\mathrm{y}: \mathrm{Neg}}
\end{aligned}
$$

More rules for division?

$$
\begin{gathered}
\frac{\Gamma \vdash \mathrm{x}: \mathrm{Neg} \quad \Gamma \vdash \mathrm{y}: \mathrm{Neg}}{\Gamma \vdash \mathrm{x} / \mathrm{y}: \operatorname{Pos}} \\
\frac{\Gamma \vdash \mathrm{x}: \operatorname{Pos} \quad \Gamma \vdash \mathrm{y}: \mathrm{Neg}}{\Gamma \vdash \mathrm{x} / \mathrm{y}: \mathrm{Neg}}
\end{gathered}
$$

$$
\frac{\Gamma \vdash \mathrm{x}: \operatorname{Int} \quad \Gamma \vdash \mathrm{y}: \mathrm{Neg}}{\Gamma \vdash \mathrm{x} / \mathrm{y}: \operatorname{Int}}
$$

Making Rules Useful

- Let x be a variable

```
\(\frac{\Gamma \vdash \mathrm{x}: \operatorname{Int} \quad \Gamma \oplus\{(x, \operatorname{Pos})\} \vdash e_{1}: T \quad \Gamma \vdash e_{2}: T}{\Gamma \vdash\left(\text { if }(\mathrm{x}>0) e_{1} \text { else } e_{2}\right): \mathrm{T}}\)
\Gamma\vdash\textrm{x}: Int }\quad\Gamma\vdash\mp@subsup{e}{1}{}:T\quad\Gamma\oplus{(x,Neg)}\vdash\mp@subsup{e}{2}{}:
    \Gamma \vdash ( \text { if (x > = 0) e else el e} ) : T
var x : Int
var y : Int
if (y > 0) {
    if (x > 0) {
    var z : Pos = x * y
        res = 10 / / z

\section*{Subtyping Example}
```

def f(x:Int) : Pos = {
if (x < 0) -x else x+1
}
var p : Pos
var q : Int
q}=\textrm{f}(\textrm{p})\longleftarrow\mathrm{ Does this statement type check?

```

Given:
\[
\begin{gathered}
\text { Pos }<: \text { Int } \\
\Gamma \vdash \mathrm{f}: \text { Int } \rightarrow \text { Pos }
\end{gathered}
\]
\(\frac{(\mathrm{q}, \text { Int }) \in \Gamma}{\mathrm{q}=\mathrm{f}(\mathrm{p}): \text { void }}\)

\section*{Subtyping Example}
```

def f(x:Pos) : Pos = {
if (x < 0) -x else x+1
}
var p : Int
var q : Int
q}=\textrm{f}(\textrm{p})\longleftarrow~\mathrm{ Does this statement type check?
does not type check

```

\section*{What Pos/Neg Types Can Do}
def multiplyFractions(p1: Int, q1: Pos, p2: Int, q2: Pos) : (Int,Pos) \{ (p1*q1, q1*q2)
\}
def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) \{ ( \(\left.p 1^{*} q 2+p 2 * q 1, q 1 * q 2\right)\)
\}
def printApproxValue(p:Int, q: Pos) = \{ print(p/q) // no division by zero
\}

More sophisticated types can track intervals of numbers and ensure that a program does not crash with an array out of bounds error.

\section*{Subtyping and Product Types}

\section*{Subtyping for Products}
\[
T_{1}<: T_{2} \text { implies for all e: }
\]
\[
\frac{\Gamma \vdash e: T_{1}}{\Gamma \vdash e: T_{2}}
\]

Type for a tuple:
\[
\begin{aligned}
& \frac{x: T_{1} \quad y: T_{2}}{(x, y): T_{1} \times T_{2}} \\
& \frac{x: T_{1} \quad T_{1}<: T_{1}^{\prime}}{\frac{x: T_{1}^{\prime}}{(x, y): T_{1}^{\prime} \times T_{2}^{\prime}}} \frac{y: T_{2} \quad T_{2}<: T_{2}^{\prime}}{y: T_{2}^{\prime}}
\end{aligned}
\]

So, we might as well add:
\[
\frac{T_{1}<: T_{1}^{\prime} \quad T_{2}<: T_{2}^{\prime}}{T_{1} \times T_{2}<: T_{1}^{\prime} \times T_{2}^{\prime}}
\]
covariant subtyping for pair types denoted ( \(T_{1}, T_{2}\) ) or Pair \(\left[T_{1}, T_{2}\right]\)

\section*{Analogy with Cartesian Product}
\[
\frac{T_{1}<: T_{1}^{\prime} \quad T_{2}<: T_{2}^{\prime}}{T_{1} \times T_{2}<: T_{1}^{\prime} \times T_{2}^{\prime}}
\]
\[
\frac{T_{1} \subseteq T_{1}^{\prime} \quad T_{2} \subseteq T_{2}^{\prime}}{T_{1} \times T_{2} \subseteq T_{1}^{\prime} \times T_{2}^{\prime}}
\]


\section*{Subtyping and Function Types}

\section*{Subtyping for Function Types}
\[
\mathrm{T}_{1}<: \mathrm{T}_{2} \text { implies for all e: } \quad \frac{\Gamma \vdash e: T_{1}}{\Gamma \vdash e: T_{2}}
\]


Consequence:

as if \(\Gamma \mid-m: T_{1}{ }_{1} \times \ldots \times T_{n}{ }^{\prime} \rightarrow T^{\prime}\)

\section*{Function Space as Set}

A function type is a set of functions (function space) defined as follows:
\(\mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}=\left\{\mathrm{f} \mid \forall \mathrm{x} .\left(\mathrm{x} \in \mathrm{T}_{1} \rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{T}_{2}\right)\right\}\)
We can prove \(/ \int_{\substack{\text { contravariance because } \\ x \in T_{1} \text { is left of implication }}}\)
\[
\frac{T_{1}^{\prime} \subseteq T_{1}}{T_{1} \rightarrow T_{2} \subseteq T_{1}^{\prime} \subseteq T_{2}^{\prime}} \quad T_{2} \subseteq T_{2}^{\prime}
\]

Proof \(\quad \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2}=\left\{\mathrm{f} \mid \forall \mathrm{x} .\left(\mathrm{x} \in \mathrm{T}_{1} \rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{T}_{2}\right)\right\}\)
\[
\frac{T_{1}^{\prime} \subseteq T_{1} \quad T_{2} \subseteq T_{2}^{\prime}}{T_{1} \rightarrow T_{2} \subseteq T_{1}^{\prime} \rightarrow T_{2}^{\prime}}
\]

\section*{Subtyping for Classes}
- Class C contains a collection of methods
- For class sub-typing, we require that methods named the same are subtypes

\section*{Example}
class C \{ def \(m\left(x: T_{1}\right): T_{2}=\{\ldots\}\)
\}
class D extends C \{
override \(\operatorname{def} m\left(x: T^{\prime}\right): T^{\prime}{ }_{2}=\{\ldots\}\)
\}
\(D<: C \quad\) so need to have \(\quad\left(T_{1} \rightarrow T_{2}\right)<:\left(T_{1} \rightarrow T_{2}\right)\)
Therefore, we need to have:
\[
\begin{array}{ll}
\mathrm{T}_{2}^{\prime}<: \mathrm{T}_{2} & \text { (result behaves like the class) } \\
\mathrm{T}_{1}<: \mathrm{T}_{1}^{\prime} & \text { (argument behaves opposite) }
\end{array}
\]

\section*{Mutable and Immutable Fields}
- We view field var f: T as two methods
- getF : T
\(-\operatorname{setF}(x: T)\) : void \(\quad T \rightarrow\) void
- For val f: T (immutable): we have only getF

\section*{Could we allow this?}
```

class A {} class B extends A {...} B <: A
class C {
val x : A = ...

```
\}
class D extends C \{
override val \(x\) : \(B=\ldots\)
\}

Because \(\mathrm{B}<\) : A , this is a valid way for D to extend \(\mathrm{C}(\mathrm{D}<: \mathrm{C})\)
Substitution principle:
If someone uses \(\mathrm{z}: \mathrm{D}\) thinking it is \(\mathrm{z}: \mathrm{C}\), the fact that they read \(z . x\) and obtain \(B\) as a specific kind of \(A\) is not a problem.

\section*{What if x is a var ?}
```

class A {} class B extends A {...} B <: A
class C {
var x : A = ...
}
class D extends C {
override var x : B = ...
?!?

```
\}

If we now imagine the setter method (i.e. field assignment), in the first case the setter has type ( \(\mathrm{A}->\) void) and in the second ( \(\mathrm{B}->\) void). By contravariance ( \(A\)-> void) <: ( \(B\)-> void) so we cannot have \(D<: C\)

\section*{Soundness of Types}

\section*{ensuring that a type system is not broken}

\section*{Example: Tootool 0.1 Language}


Tootool is a rural community in the central east part of the Riverina [New South Wales, Australia]. It is situated by road, about 4 kilometres east from French Park and 16 kilometres west from The Rock. Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]

\section*{Type System for Tootool 0.1}
Pos <: Int
Neg <: Int
\(\frac{\Gamma \vdash \mathrm{x}: \mathrm{T} \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}\) assignment
\(\frac{\Gamma \vdash \mathrm{e}: \mathrm{T} \quad \Gamma \vdash \mathrm{T}<: \mathrm{T},}{\Gamma \vdash \mathrm{e}: \mathrm{T}}\) subtyping
does it type check? def intSqrt(x:Pos) : Pos = \{ ...\} var p: Pos
var q: Neg
var r: Pos
\(q=-5 \longleftarrow \Gamma=\{(p\), Pos \(),(q, N e g),(r\), Pos \()\), \(\mathrm{p}=\mathrm{q} \longleftarrow\) (intSqrt, Pos \(\rightarrow\) Pos) \(\}\)
\(r=\) intSqrt(p)
Runtime error: intSqrt invoked with a negative argument!
\(\frac{\mathrm{p}: \operatorname{Pos} \quad \text { Pos }<: \text { Int }}{\frac{\mathrm{p}: \text { Int }}{} \frac{\mathrm{q}: \text { Neg } \quad \text { Neg }<: \text { Int }}{\mathrm{q}: \text { Int }}}\)

\section*{What went wrong in Tootool 0.1 ?}

does it type check? - yes def intSqrt(x:Pos) : Pos = \{ ...\} var p: Pos
var q: Neg
var r: Pos
\[
\begin{aligned}
& q=-5 \\
& p=q \longleftarrow \stackrel{\Gamma=\{(p, \text { Pos }),(q, N e g),(r, \text { Pos }),}{(\text { intSqrt, Pos } \rightarrow \text { Pos })\}} \\
& r=\operatorname{intSqrt}(p)
\end{aligned}
\]

Runtime error: intSqrt invoked with a negative argument!
x must be able to store any
e can have any value from T
value from \(\mathrm{T} \quad \frac{? \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}\)
Cannot use \(\Gamma \mid-\mathrm{e}: \mathrm{T}\) to mean "x promises it can store any \(\mathrm{e} \in \mathrm{T}\) "

\section*{Recall Our Type Derivation}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Pos <: Int } \\
& \text { Neg <: Int }
\end{aligned}
\]}} \\
\hline & & \\
\hline \multicolumn{2}{|l|}{\(\Gamma \vdash \mathrm{x}: \mathrm{T} \quad \Gamma \vdash \mathrm{e}: \mathrm{T}\)} & assignm \\
\hline \multicolumn{3}{|l|}{\(\Gamma \vdash(\mathrm{x}=\mathrm{e})\) : void} \\
\hline \(\Gamma \vdash \mathrm{e}: \mathrm{T}\) & \(\Gamma \vdash \mathrm{T}<: \mathrm{T}^{\prime}\) & subtyp \\
\hline
\end{tabular}

Pos <: Int
Neg <: Int
\(\frac{\Gamma \vdash \mathrm{x}: \mathrm{T} \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}\) assignment
\(\frac{\Gamma \vdash \mathrm{e}: \mathrm{T} \quad \Gamma \vdash \mathrm{T}<: \mathrm{T}^{\prime}}{\Gamma \vdash \mathrm{e}: \mathrm{T}^{\prime}}\) subtyping
\(\quad\) does it type check? - yes
def intSqrt( \(x:\) Pos \():\) Pos \(=\{\ldots\}\)
\(\operatorname{var} p:\) Pos
\(\operatorname{var} q: \operatorname{Neg}\)
\(\operatorname{var} r: \operatorname{Pos}\)
\(q=-5\)
\(p=q \longleftarrow i=\{(p\), Pos \(),(q\), Neg), (r, Pos \()\),
\(r=\operatorname{intSqurt}(p)\)

Runtime error: intSqrt invoked with a negative argument!

Values from \(p\) are integers. But p did not promise to store all kinds of integers/ Only positive ones!


\section*{Corrected Type Rule for Assignment}
Pos <: Int
Neg <: Int
does it type check? - yes def intSqrt(x:Pos) : Pos = \{ ...\} var \(p\) : Pos
var q: Neg

x must be able to store any value from \(T\)
\[
\frac{(x, T) \in \Gamma \quad \Gamma \vdash \mathrm{e}: \mathrm{T}}{\Gamma \vdash(\mathrm{x}=\mathrm{e}): \text { void }}
\]
e can have any value from \(T\)
\(\Gamma\) stores declarations (promises)

\title{
How could we ensure that some other programs will not break?
}

Type System Soundness

\section*{Proving Soundness of Type Systems}
- Goal of a sound type system:
- if the program type checks, then it never "crashes"
- crash = some precisely specified bad behavior
e.g. invoking an operation with a wrong type
- dividing one string by another string "cat" / "frog
- trying to multiply a Window object by a File object e.g. not dividing an integer by zero
- Never crashes: no matter how long it executes
- proof is done by induction on program execution

\section*{Proving Soundness by Induction}

- Program moves from state to state
- Bad state = state where program is about to exhibit a bad operation ( "cat" / "frog" )
- Good state = state that is not bad
- To prove:
program type checks \(\rightarrow\) states in all executions are good
- Usually need a stronger inductive hypothesis; some notion of very good (VG) state such that: program type checks \(\rightarrow\) program's initial state is very good state is very good \(\rightarrow\) next state is also very good state is very good \(\rightarrow\) state is good (not about to crash)

A Simple Programming Language

\section*{Program State}
```

var x : Pos
var y : Int
var z : Pos
x = 3
y=-5
z=4
X = X + Z
y=x/z
z = Z + X

```

Initially, all variables have value 1
values of variables:
\(x=1\)
\(y=1\)
\(z=1\)

\section*{Program State}
\[
\begin{aligned}
& \text { var } x: \text { Pos } \\
& \text { var } y: \operatorname{Int} \\
& \operatorname{var} z: \operatorname{Pos} \\
& x=3 \\
& y=-5 \\
& z=4 \\
& x=x+z \\
& y=x / z \\
& z=z+x
\end{aligned}
\]
values of variables:
\(x=3\)
\(y=1\)
\(z=1\)

\section*{Program State}
\[
\begin{aligned}
& \operatorname{var} x: \operatorname{Pos} \\
& \operatorname{var} y: \operatorname{Int} \\
& \operatorname{var} z: \operatorname{Pos} \\
& x=3 \\
& y=-5 \\
& z=4 \\
& x=x+z \\
& y=x / z \\
& z=z+x
\end{aligned}
\]
values of variables:
\[
\begin{aligned}
& x=3 \\
& y=-5 \\
& z=1
\end{aligned}
\]

\section*{Program State}
```

var x : Pos
var y : Int
var z:Pos
x=3
y=-5
z=4
x=x+z}\longleftarrow~\mathrm{ position in source
y=x/z
z = z + x

```
values of variables:
\[
\begin{aligned}
& x=3 \\
& y=-5 \\
& z=4
\end{aligned}
\]

\section*{Program State}
```

var x:Pos
var y : Int
var z:Pos
x=3
y=-5
z=4
x = x + z
y=x/z}\longleftarrow~\mathrm{ position in source
z = z + x

```
values of variables:
\[
\begin{aligned}
& x=7 \\
& y=-5 \\
& z=4
\end{aligned}
\]

\section*{Program State}
```

var x:Pos
var y : Int
var z:Pos
x=3
y=-5
z=4
x = x + z
y=x/z
z=z+x}\longleftarrow~\mathrm{ position in source

```
values of variables:
\[
\begin{aligned}
& x=7 \\
& y=1 \\
& z=4
\end{aligned}
\]
formal description of such program execution is called operational semantics

\section*{Operational semantics}

Operational semantics gives meaning to programs by describing how the program state changes as a sequence of steps.
- big-step semantics: consider the effect of entire blocks
- small-step semantics: consider individual steps (e.g. \(z=x+y\) )

V : set of variables in the program
pc:
\(\mathrm{g}: \mathrm{V} \rightarrow \mathrm{Int}\)
( \(\mathrm{g}, \mathrm{pc}\) )
integer variable denoting the program counter function giving the values of program variables program state

Then, for each possible statement in the program we define how it changes the program state.

Example: \(z=x+y\)
\[
(\mathrm{g}, \mathrm{pc}) \rightarrow\left(\mathrm{g}^{\prime}, \mathrm{pc}+1\right) \quad \text { s. t. } \quad \mathrm{g}^{\prime}=\mathrm{g}[\mathrm{z}:=\mathrm{g}(\mathrm{x})+\mathrm{g}(\mathrm{y})]
\]

\section*{Type Rules of Simple Language}

\section*{Programs:}
\(\left.\begin{array}{l}\operatorname{var} x_{1}: \text { Pos } \\
\operatorname{var} x_{2}: \operatorname{Int} \\
\ldots \\
\operatorname{var} x_{n}: \operatorname{Pos}\end{array}\right\}\)\begin{tabular}{l}
\(\left.\quad \begin{array}{l}\text { variable declarations } \\
\text { var } x: \text { Pos (strictly positive) } \\
\text { var } x: \operatorname{lnt}\end{array}\right]\)
\end{tabular}
followed by

\[
\frac{e_{1}: \text { Int } \quad e_{2}: \text { Pos }}{e_{1} / e_{2}: \text { Int }} \quad \frac{e_{1}: \text { Pos } e_{2}: \text { Pos }}{e_{1}+e_{2}: \text { Pos }}
\]

\section*{Bad State: About to Divide by Zero (Crash)}
```

var x:Pos
var y : Int
var z:Pos
x=1
y=-1
z=x+y
x = x+z
y=x/z
z = z +

```
values of variables:
\[
\begin{aligned}
& x=1 \\
& y=-1 \\
& z=0
\end{aligned}
\]
```

$x=x+z$
position in source
$z=z+$

```

Definition: state is bad if the next instruction is of the form \(x_{i}=x_{j} / x_{k}\) and \(x_{k}\) has value 0 in the current state.

\section*{Good State: Not (Yet) About to Divide by Zero}
```

var x: Pos
var y : Int
var z: Pos
$x=1$
$y=-1$
$z=x+y$
$x=x+z$
$y=x / z$
z = $\mathrm{z}+\mathrm{x}$

```
values of variables:
    \(x=1\)
    \(y=-1\)
    \(z=1\)
    Good

Definition: state is good if it is not bad.
Definition: state is bad if the next instruction is of the form \(x_{i}=x_{j} / x_{k}\) and \(x_{k}\) has value 0 in the current state.

\section*{Good State: Not (Yet) About to Divide by Zero}
```

var x: Pos
var y : Int
var z: Pos
$x=1$
$y=-1$
$z=x+y$
$x=x+z \longleftarrow$ position in source
$y=x / z$
z = $\mathrm{z}+\mathrm{x}$

```

Definition: state is good if it is not bad.
Definition: state is bad if the next instruction is of the form \(x_{i}=x_{j} / x_{k}\) and \(x_{k}\) has value 0 in the current state.

\section*{Moved from Good to Bad in One Step!}

Being good is not preserved by one step, not inductive!
It is very local property, does not take future into account.
```

var x:Pos
var y : Int
var z:Pos
x=1
y=-1
z=x+y
x=x+z
y=x/z}\longleftarrow~\mathrm{ position in source
z = z + x

```
values of variables:
    \(x=1\)
\(y=-1\)
    \(z=0\)
    Bad

Definition: state is good if it is not bad.
Definition: state is bad if the next instruction is of the form \(x_{i}=x_{j} / x_{k}\) and \(x_{k}\) has value 0 in the current state.

\section*{Being Very Good: A Stronger Inductive Property}
\[
\text { Pos }=\{1,2,3, \ldots\}
\]
```

var x: Pos
var y : Int
var z: Pos
$x=1$
$y=-1$
$z=x+y$
$x=x+z \longleftarrow$ position in source
values of variables:
$x=1$
$y=-1$
$\underline{z=0} \notin \mathrm{Pos}$
$y=x / z$
$z=z+x$

```

Definition: state is good if it is not about to divide by zero.
Definition: state is very good if each variable belongs to the domain determined by its type (if z:Pos, then \(z\) is strictly positive).

\section*{If you are a little typed program, what will your parents teach you?}

If you type check and succeed:
- you will be very good from the start
- if you are very good, then you will remain very good in the next step
- If you are very good, you will not crash

Hence, please type check, and you will never crash!
Soundnes proof = defining "very good" and checking the properties above.

\section*{Definition of Simple Language}

Programs:
\(\operatorname{var} x_{1}: \operatorname{Pos}\)
\(\operatorname{var} x_{2}: \operatorname{Int}\)
...
\(\operatorname{var} x_{n}\) : Pos
\(\left.\begin{array}{l}x_{i}=x_{j} \\
x_{p}=x_{q}+x_{r} \\
x_{a}=x_{b} / x_{c} \\
\cdots \\
x_{p}=x_{q}+x_{r}\end{array}\right\}\)\begin{tabular}{ll} 
followed by \\
statements of one of the forms \\
1) & \(x_{i}=k\) \\
2) & \(x_{i}=x_{j}\) \\
3) & \(x_{i}=x_{j} / x_{k}\) \\
4) & \(x_{i}=x_{j}+x_{k}\) \\
(No complex expressions)
\end{tabular}
\[
\frac{e_{1}: \text { Int } e_{2}: \text { Pos }}{e_{1} / e_{2}: \text { Int }} \quad \frac{e_{1}: \text { Pos } e_{2}: \text { Pos }}{e_{1}+e_{2}: \text { Pos }}
\]

\section*{Checking Properties in Our Case} Holds: in initial state, variables are =1
- If you type check and succeed: \(1 \in \operatorname{Pos}\)
- you will be very good from the start. \(1 \in \operatorname{lnt}\)
- if you are very good, then you will remain very good in the next step
- If you are very good, you will not crash.

If next state is \(x / z\), type rule ensures \(z\) has type Pos Because state is very good, it means \(z \in\) Pos so \(z\) is not 0 , and there will be no crash.

Definition: state is very good if each variable belongs to the domain determined by its type (if z:Pos, then \(z\) is strictly positive).

\section*{Example Case 1}

Assume each variable belongs to its type.
```

var x:Pos
var y : Pos
var z:Pos

```
\(y=3\)
\(z=2\)
\(\mathrm{z}=\mathrm{x}+\mathrm{y} \longleftarrow\) position in source
values of variables:
    \(x=1\)
    \(y=3\)
    \(z=2\)
\(x=x+z\)
\(y=x / z \quad\) the next statement is: \(z=x+y\)
\(z=z+x \quad\) where \(x, y, z\) are declared Pos.

Goal: prove that again each variable belongs to its type.
- variables other than \(z\) did not change, so belong to their type
- \(z\) is sum of two positive values, so it will have positive value

\section*{Example Case 2}

Assume each variable belongs to its type.
var x: Pos
var y : Int
var z: Pos
\(y=-5\)
\(z=2\)
\(\mathrm{z}=\mathrm{x}+\mathrm{y} \longleftarrow\) position in source
values of variables:
\(x=1\)
\(x=x+z\)
\(y=x / z \quad\) the next statement is: \(z=x+y\)
\(z=z+x\)
where \(x, z\) declared Pos, \(y\) declared Int
Goal: prove that again each variable belongs to its type. this case is impossible, because \(z=x+y\) would not type check How do we know it could not type check?

\section*{Must Carefully Check Our Type Rules}
var x: Pos
var y : Int
var z: Pos
\(y=-5\)
\(z=2\)
\(z=x+y\)
\(x=x+z\)
\(y=x / z\)
\(z=z+x\)

Type rules:
\(\Gamma=\left\{\left(x_{1}\right.\right.\), Pos \()\),
( \(x_{2}, \operatorname{lnt}\) ),
Conclude that the only
types we can derive are:
\(x\) : Pos, \(x\) : Int
\(y\) : Int
\(x+y\) : Int
\[
\frac{(x, T) \in \Gamma \quad \Gamma \vdash e: T}{\Gamma \vdash(x=e): \text { void }}
\]

Cannot type check
\[
\frac{\Gamma \vdash x: T \quad T<: T^{\prime}}{\Gamma \vdash x: T^{\prime}}
\]
\(\mathbf{z}=\mathbf{x}+\mathrm{y}\) in this environment. \(\frac{(x, T) \in \Gamma}{\Gamma \vdash x: T} \frac{e_{1}: \text { Int } e_{2}: \text { Int }}{e_{1}+e_{2}: \text { Int }}\)
\[
\frac{e_{1}: \text { Int } \quad e_{2}: \text { Pos }}{e_{1} / e_{2}: \text { Int }} \quad \frac{e_{1}: \text { Pos } e_{2}: \text { Pos }}{e_{1}+e_{2}: \text { Pos }}
\]

We would need to check all cases
(there are many, but they are easy)

\section*{Back to the start}
\[
\begin{gathered}
\overline{\mathrm{k}: \operatorname{Pos}} \overline{\text {-k: Int }} \\
\hline \frac{\Gamma \vdash x: T}{\Gamma \vdash(x=e): \text { void }} \\
\hline \frac{\Gamma \vdash x: T}{\Gamma \vdash x: T^{\prime}} \\
\frac{(x, T) \in \Gamma}{\Gamma \vdash x: T}
\end{gathered}
\]

\title{
Does the proof still work?
}

If not, where does it break?
\[
\begin{aligned}
& \frac{e_{1}: \text { Int } \quad e_{2}: \text { Int }}{e_{1}+e_{2}: \text { Int }} \\
& \frac{e_{1}: \text { Int } \quad e_{2}: \text { Pos }}{e_{1} / e_{2}: \text { Int }} \\
& \frac{e_{1}: \text { Pos } \quad e_{2}: \text { Pos }}{e_{1}+e_{2}: \text { Pos }}
\end{aligned}
\]

\section*{Remark}
- We used in examples Pos <: Int
- Same examples work if we have
class Int \(\{\ldots\}\)
class Pos extends Int \(\{\ldots\}\)
and is therefore relevant for OO languages

\section*{What if we want more complex types?}
```

class A { }
class B extends A {` Should it type check?

```
void foo() \{ \}
\}
class Test \{
- Does this type check in Scala?
    public static void main(String[]
args) \{
B[] \(\mathrm{b}=\) new \(\mathrm{B}[5]\);
A[] a;
a \(=\) b;
System.out.println("Hello,");
a[0] = new A();
System.out.println("world!");
b[0].foo();

\section*{What if we want more complex types?}

Suppose we add to our language a reference type: class Ref[T](var content: T)

Programs:
var \(x_{1}\) : Pos
\(\operatorname{var} x_{2}\) : Int
\(\operatorname{var} x_{3}\) : Ref[Int]
\(\operatorname{var} \mathrm{x}_{4}: \operatorname{Ref}[\mathrm{Pos}]\)
\(x=y\)
\(x=y+z\)
\(x=y / z\)
\(x=y+z\).content
x .content \(=\mathrm{y}\)

Exercise 1:
Extend the type rules to use with Ref[T] types.
Show your new type system is
sound.
Exercise 2:
Can we use the subtyping rule?
If not, where does the proof break?
\(\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}\)

\section*{Simple Parametric Class}
class Ref[T](var content: T)
Can we use the subtyping rule

\(\frac{\operatorname{Pos}<: \text { Int }}{\operatorname{Ref}[\operatorname{Pos}]<: \operatorname{Ref}[\operatorname{Int}]}\)
\(\left.\begin{array}{l}\operatorname{var} \mathrm{x}: \operatorname{Ref}[\operatorname{Pos}] \\ \operatorname{var} \mathrm{y}: \operatorname{Ref}[\operatorname{lnt}] \\ \operatorname{var} \mathrm{z}: \operatorname{lnt}\end{array}\right\} \Gamma\)
x.content = 1
y.content \(=-1\)
\(y=x\)
\(y\). content \(=0\)
\[
\frac{\frac{\Gamma \vdash x: \operatorname{Ref}[P o s]}{(x, \operatorname{Ref}[\operatorname{Int}]) \in \Gamma} \quad \Gamma \vdash y: \operatorname{Ref}[\operatorname{Int}]}{(\mathrm{y}=\mathrm{x}): \text { void }}
\]
type checks

\section*{Simple Parametric Class}
class Ref[T](var content: T)
Can we use the subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}
\]


\section*{Simple Parametric Class}
class Ref[T](var content : T)
Can we use the subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}
\]
\(\operatorname{var} x: \operatorname{Ref}[P o s]\)
var y: Ref[Int]
var z: Int
x.content = 1
y.content \(=-1\)

\(y=x\)
\(y\). content \(=0\)
z = z / x.content

\section*{Simple Parametric Class}
class Ref[T](var content: T)
Can we use the subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}
\]


\section*{Analogously}

\section*{class Ref[T](var content: T)}

Can we use the converse subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}\left[\mathrm{T}^{\prime}\right]<: \operatorname{Ref}[\mathrm{T}]}
\]


\section*{Mutable Classes do not Preserve Subtyping}
class Ref[T](var content : T)
Even if T <: \(\mathrm{T}^{\prime}\),

\section*{Ref[T] and Ref[T'] are unrelated types}
\(\operatorname{var} \mathrm{x}: \operatorname{Ref}[\mathrm{T}]\)
var \(y: \operatorname{Ref}\left[T^{\prime}\right]\)
\(\mathrm{x}=\mathrm{y} \longleftarrow\) type checks only if \(\mathrm{T}=\mathrm{T}\),

\section*{Same Holds for Arrays, Vectors, all mutable containers}

Even if T <: \(\mathrm{T}^{\prime}\),
\(\operatorname{Array}[T]\) and \(\operatorname{Array}\left[\mathrm{T}^{\prime}\right]\) are unrelated types
\[
\begin{aligned}
& \operatorname{var} x: \operatorname{Array[Pos](1)} \\
& \operatorname{var} y: A r r a y[\operatorname{lnt}](1) \\
& \operatorname{var} z: \operatorname{Int} \\
& x[0]=1 \\
& y[0]=-1 \\
& y=x \\
& y[0]=0 \\
& z=z / x[0]
\end{aligned}
\]

\section*{Case in Soundness Proof Attempt}
class Ref[T](var content: T)
Can we use the subtyping rule
\[
\frac{\mathrm{T}<: \mathrm{T}^{\prime}}{\operatorname{Ref}[\mathrm{T}]<: \operatorname{Ref}\left[\mathrm{T}^{\prime}\right]}
\]
\(\operatorname{var} \mathrm{x}: \operatorname{Ref}[P o s]\)
var y: Ref[Int]
var z: Int
x.content = 1
\(y\). content \(=-1\)
\(y=x\)
\(y\). content \(=0\)
z = z / x.content

prove each variable belongs to its type: variables other than y did not change.. (?!)

\section*{Mutable vs Immutable Containers}
- Immutable container, Coll[T]
- has methods of form e.g. get(x:A):T
- if \(T<\) : \(T^{\prime}\), then Coll[ \(\left.T^{\prime}\right]\) has \(\operatorname{get}(x: A): T^{\prime}\)
- we have \((A \rightarrow T)<:\left(A \rightarrow T^{\prime}\right)\) covariant rule for functions, so Coll[T] <: Coll[T']
- Write-only data structure have
- setter-like methods, \(\operatorname{set}(v: T): B\)
- if \(T<: T^{\prime}\), then Container[ \(\left.T^{\prime}\right]\) has \(\operatorname{set}(v: T): B\)
- would need \((T \rightarrow B)<\) : \(\left(T^{\prime} \rightarrow B\right)\) contravariance for arguments, so Coll[T'] <: Coll[T]
- Read-Write data structure need both, so they are invariant, no subtype on Coll if T <: \(\mathrm{T}^{\prime}\)```

