Arrays

Using array as an expression, on the right-hand side

$$\frac{\Gamma \vdash a \colon Array(T) \qquad \Gamma \vdash i \colon Int}{\Gamma \vdash a[i] \colon T}$$

Assigning to an array

$$\frac{\Gamma \vdash a: Array(T) \qquad \Gamma \vdash i: Int \qquad \Gamma \vdash e: T}{\Gamma \vdash (a[i] = e): void}$$

Example with Arrays

```
def next(a : Array[Int], k : Int) : Int = {
    a[k] = a[a[k]]
}
```

Given $\Gamma = \{(a, Array(Int)), (k, Int)\}, check <math>\Gamma \vdash a[k] = a[a[k]]: void$

$$\frac{\Gamma \vdash a \colon Array(Int)}{\Gamma \vdash a \colon Array(Int)} \frac{\Gamma \vdash k \colon Int}{\Gamma \vdash a[k] \colon Int} \\ \frac{\Gamma \vdash a[a[k]] \colon Int}{\Gamma \vdash a[k] = a[a[k]] \colon \mathsf{void}} \Gamma \vdash k \colon Int$$

Type Rules (1)

$$\frac{(x: T) \in \Gamma}{\Gamma \vdash x: T}$$
 variable

IntConst(k): Int constant

$$\frac{\Gamma \vdash e_1 : T_1 \ \dots \ \Gamma \vdash e_n : T_n \qquad \Gamma \vdash f : (T_1 \times \dots \times T_n \to T)}{\Gamma \vdash f(e_1, \dots, e_n) : T}$$
 function application

$$\frac{\Gamma \vdash e_1 \colon \text{Int} \qquad \Gamma \vdash e_2 \colon \text{Int}}{\Gamma \vdash (e_1 + e_2) \colon \text{Int}} \quad \mathsf{plus} \quad \frac{\Gamma \vdash e_1 \colon \text{String}}{\Gamma \vdash (e_1 + e_2) \colon \text{String}} \quad \frac{\Gamma \vdash e_2 \colon \text{String}}{\Gamma \vdash (e_1 + e_2) \colon \text{String}}$$

$$\frac{\Gamma \vdash b \colon Boolean \qquad \Gamma \vdash e_1 : T \qquad \Gamma \vdash e_2 : T}{\Gamma \vdash (if(b) \ e_1 \ else \ e_2) : T} \quad \text{if}$$

$$\Gamma \vdash b$$
: Boolean $\Gamma \vdash s$: void $\Gamma \vdash (while(b) s)$: void

$$\frac{(x, T) \in \Gamma \qquad \Gamma \vdash e: T}{\Gamma \vdash (x=e): \text{ void}}$$

while

assignment

Type Rules (2)

$$\frac{\Gamma \vdash e: T}{\Gamma \vdash \{e\}: T} \qquad \frac{}{\Gamma \vdash \{\}: \text{ void}}$$

$$\frac{\Gamma \oplus \{(x, T_1)\} \vdash \{t_2; \dots; t_n\} \colon \Gamma}{\Gamma \vdash \{\text{var } x : T_1; t_2; \dots; t_n\} \colon \Gamma}$$

$$\frac{\Gamma \vdash s_1 \colon \text{void} \qquad \Gamma \vdash \{t_2; \ldots; t_n\} \colon \mathbf{T}}{\Gamma \vdash \{s_1; t_2; \ldots; t_n\} \colon \mathbf{T}}$$

$$\dfrac{\Gamma \vdash a \colon \operatorname{Array}(T) \qquad \Gamma \vdash i \colon \operatorname{Int}}{\Gamma \vdash a[i] \colon T}$$
 array use

$$\frac{\Gamma \vdash a: Array(T) \qquad \Gamma \vdash i: Int \qquad \Gamma \vdash e: T}{\Gamma \vdash a[i] = e}$$

array assignment

block

Type Rules (3)

Γ^{c} - top-level environment of class C

```
class C {
    var x: Int;
    def m(p: Int): Boolean = {...}
}
\Gamma^{c} = \{ (x, Int), (m, C \times Int \rightarrow Boolean) \}
```

$$\Gamma \vdash e : C \quad \Gamma^C \vdash m : \mathbf{C} \times T_1 \times \ldots \times T_n \to T_{n+1} \qquad \Gamma \vdash e_i : T_i \quad 1 \leq i \leq n$$
 $\Gamma \vdash e.m(e_1, \ldots, e_n) : T_{n+1} \qquad \mathsf{method\ invocation}$

$$\frac{\Gamma \vdash e \colon C \qquad \Gamma^C \vdash f \colon T}{\Gamma \vdash e . f \colon T} \quad \text{field use}$$

$$\frac{\Gamma \vdash e: \ C}{\Gamma \vdash (e.f = x): \ void} \frac{\Gamma \vdash x: \ T}{\Gamma \vdash (e.f = x): \ void} \ \ \text{field assignment}$$

Does this program type check?

```
class Rectangle {
var width: Int
var height: Int
var xPos: Int
var yPos: Int
 def area(): Int = {
  if (width > 0 && height > 0)
  width * height
 else 0
 def resize(maxSize: Int) {
  while (area > maxSize) {
   width = width / 2
   height = height / 2
```

```
\Gamma_0 = \begin{cases} w: Int, h: Int, \\ x: Int, y: Int, \\ area: Unit \rightarrow Int, \\ resize: Int \rightarrow Unit \end{cases}
```

Type check: area

Type check: resize

Semantics of Types

- Operational view: Types are named entities
 - such as the primitive types (Int, Bool etc.) and explicitly declared classes, traits ...
 - their meaning is given by methods they have
 - constructs such as inheritance establish relationships between classes
- Mathematically, Types are sets of values
 - $Int = \{ ..., -2, -1, 0, 1, 2, ... \}$
 - Boolean = { false, true }
 - Int → Int = { f : Int -> Int | f is computable }

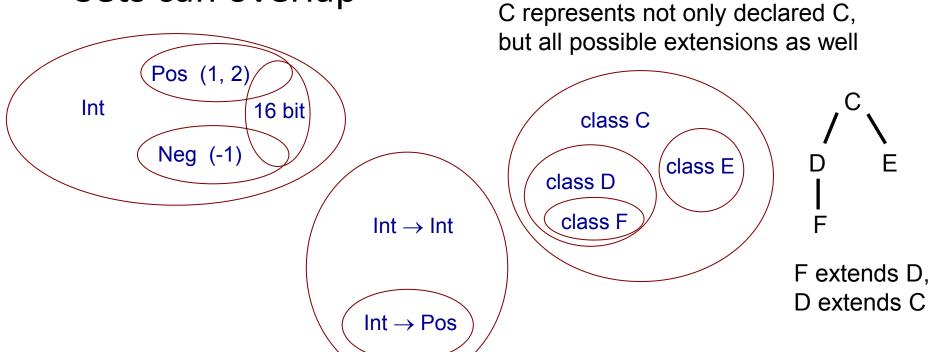
Types as Sets

Sets so far were disjoint

Boolean true, false

String
"Richard" "cat"

Sets can overlap



SUBTYPING

Subtyping

- Subtyping corresponds to subset
- Systems with subtyping have non-disjoint sets
- T₁ <: T₂ means T₁ is a subtype of T₂
 - corresponds to $T_1 \subseteq T_2$ in sets of values
- Rule for subtyping: analogous to set reasoning

In terms of sets

Types for Positive and Negative Ints

Int =
$$\{ ..., -2, -1, 0, 1, 2, ... \}$$

Pos = $\{ 1, 2, ... \}$ (not including zero)
Neg = $\{ ..., -2, -1 \}$ (not including zero)

types: Pos <: Int Neg <: Int

$$\frac{\Gamma \vdash x \colon Pos}{\Gamma \vdash x + y \colon Pos}$$

$$\frac{\Gamma \vdash x \colon Pos}{\Gamma \vdash x \colon y \colon Neg}$$

$$\frac{\Gamma \vdash x : Pos}{\Gamma \vdash x / y : Pos}$$

sets: Pos ⊆ Int Neg ⊆ Int

$$x \in Pos$$
 $y \in Pos$ $x + y \in Pos$

$$\frac{x \in Pos \quad y \in Neg}{x * y \in Neg}$$

$$\frac{x \in Pos}{x \mid y \in Pos} \frac{\text{(y not zero)}}{\text{(x/y well defined)}}$$

Rules for Neg, Pos, Int

$$\Gamma \vdash x: Pos \quad \Gamma \vdash y: Neg$$

$$\Gamma \vdash x: Pos \quad \Gamma \vdash y: Neg$$

$$\Gamma \vdash x: Pos \quad \Gamma \vdash y: Neg$$

$$\Gamma \vdash x * y: ???$$

$$\Gamma \vdash x: Pos \quad \Gamma \vdash y: Int$$

$$\Gamma \vdash x + y: ???$$

$$\Gamma \vdash x: Pos \quad \Gamma \vdash y: Int$$

 $\Gamma \vdash x * y:???$

More Rules

$$\frac{\Gamma \vdash x \colon \text{Neg} \qquad \Gamma \vdash y \colon \text{Neg}}{\Gamma \vdash x * y \colon \text{Pos}}$$

$$\frac{\Gamma \vdash x \colon \text{Neg} \qquad \Gamma \vdash y \colon \text{Neg}}{\Gamma \vdash x + y \colon \text{Neg}}$$

More rules for division?

$$\frac{\Gamma \vdash x \colon \text{Neg} \qquad \Gamma \vdash y \colon \text{Neg}}{\Gamma \vdash x \ / \ y \colon \text{Pos}}$$

$$\frac{\Gamma \vdash x \colon Pos \qquad \Gamma \vdash y \colon Neg}{\Gamma \vdash x \ / \ y \colon Neg}$$

$$\frac{\Gamma \vdash x \colon Int}{\Gamma \vdash x \mid y \colon Int} \quad \frac{\Gamma \vdash y \colon Neg}{\Gamma \vdash x \mid y \colon Int}$$

Making Rules Useful

Let x be a variable

```
\Gamma \vdash \mathbf{x} : \text{ Int } \qquad \Gamma \oplus \{(x, Pos)\} \vdash e_1 : T \qquad \Gamma \vdash e_2 : T
                    \Gamma \vdash (\text{if } (x > 0) \ e_1 \ \text{else } e_2): T
 \Gamma \vdash x: Int \Gamma \vdash e_1 : T \Gamma \oplus \{(x, Neg)\} \vdash e_2 : T
                  \Gamma \vdash (\text{if } (x >= 0) \ e_1 \ \text{else } e_2): T
var x : Int
var y : Int
if (y > 0) {
   if (x > 0) {
       var z : Pos = x * y
       res = 10 / z
                                    type system proves: no division by zero
```

Subtyping Example

```
def f(x:Int) : Pos = {
     if (x < 0) -x else x+1
  var p : Pos
  var q : Int
  q = f(p)
                  Does this statement type check?
                          Given:
                                  Pos <: Int
                                \Gamma \vdash f: Int \rightarrow Pos
                  p: Pos Pos <: Int
                           p: Int
                                                f: Int \rightarrow Pos
                                        f(p): Pos
                                                                    Pos <: Int
(q, Int) \in \Gamma
                                                       f(p): Int
                         q = f(p): void
```

Subtyping Example

does not type check

What Pos/Neg Types Can Do

```
def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {
 (p1*q1, q1*q2)
def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {
 (p1*q2 + p2*q1, q1*q2)
def printApproxValue(p : Int, q : Pos) = {
 print(p/q) // no division by zero
```

More sophisticated types can track intervals of numbers and ensure that a program does not crash with an array out of bounds error.

Subtyping and Product Types

Subtyping for Products

 $T_1 <: T_2$ implies for all e:

$$\frac{\Gamma \vdash e : T_1}{\Gamma \vdash e : T_2}$$

Type for a
$$x:T_1$$
 $y:T_2$ tuple: $(x,y):T_1\times T_2$

$$x:T_1$$
 $T_1 <: T_1'$ $y:T_2$ $T_2 <: T_2'$
 $x:T_1'$ $y:T_2'$ $T_2 <: T_2'$
 $(x,y):T_1' \times T_2'$

So, we might as well add:

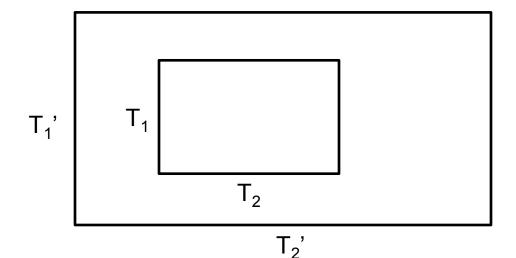
$$T_1 <: T_1' \qquad T_2 <: T_2'$$
 $T_1 \times T_2 <: T_1' \times T_2'$

covariant subtyping for pair types denoted (T_1, T_2) or Pair $[T_1, T_2]$

Analogy with Cartesian Product

$$T_1 <: T_1' \qquad T_2 <: T_2'$$
 $T_1 \times T_2 <: T_1' \times T_2'$

$$T_1 \subseteq T_1'$$
 $T_2 \subseteq T_2'$ $T_1 \times T_2 \subseteq T_1' \times T_2'$



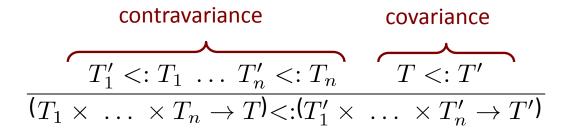
 $A \times B = \{ (a, b) | a \in A, b \in B \}$

Subtyping and Function Types

Subtyping for Function Types

 $T_1 <: T_2$ implies for all e:

$$\frac{\Gamma \vdash e : T_1}{\Gamma \vdash e : T_2}$$



Consequence:

$$\begin{array}{c|c}
\Gamma \vdash e_1 : T_1' & T_1' <: T_1 \\
\hline
\Gamma \vdash e_1 : T_1' & T_1' <: T_n
\end{array}$$

$$\begin{array}{c|c}
\Gamma \vdash e_1 : T_1' & T_1' <: T_n
\end{array}$$

$$\begin{array}{c|c}
\Gamma \vdash e_n : T_n' & T_n' <: T_n
\end{array}$$

$$\begin{array}{c|c}
\Gamma \vdash e_n : T_n'
\end{array}$$

as if $\Gamma \mid -m$: $T'_1 \times ... \times T'_n \to T'$

Function Space as Set

A function type is a set of functions (function space) defined as follows:

$$T_1 \rightarrow T_2 = \{ f | \forall x. (x \in T_1 \rightarrow f(x) \in T_2) \}$$

contravariance because $x \in T_1$ is left of implication

We can prove

$$\underbrace{T_1' \subseteq T_1}_{T_1 \to T_2 \subseteq T_1' \to T_2'}$$

Proof

$$T_1 \rightarrow T_2 = \{ f \mid \forall x. (x \in T_1 \rightarrow f(x) \in T_2) \}$$

$$T_1' \subseteq T_1$$
 $T_2 \subseteq T_2'$ $T_1 \to T_2 \subseteq T_1' \to T_2'$

Subtyping for Classes

Class C contains a collection of methods

 For class sub-typing, we require that methods named the same are subtypes

Example

```
class C {
 def m(x : T_1) : T_2 = {...}
class D extends C {
 override def m(x : T'_{1}) : T'_{2} = \{...\}
D <: C
               so need to have (T'_1 \rightarrow T'_2) <: (T_1 \rightarrow T_2)
Therefore, we need to have:
   T'_{2} <: T_{2}
                       (result behaves like the class)
   T_1 <: T'_1
                       (argument behaves opposite)
```

Mutable and Immutable Fields

We view field var f: T as two methods

```
- getF : T T

- setF(x:T): void T → void
```

For val f: T (immutable): we have only getF

Could we allow this?

```
class A {} class B extends A {...}
                                                   B <: A
class C {
 val x : A = ...
class D extends C {
 override val x : B = ...
Because B <: A, this is a valid way for D to extend C ( D <: C)
Substitution principle:
If someone uses z:D thinking it is z:C, the fact that they read
z.x and obtain B as a specific kind of A is not a problem.
```

What if x is a var?

```
class A {} class B extends A {...}
                                                  B <: A
class C {
 var x : A = ...
class D extends C {
 override var x : B = ...
If we now imagine the setter method (i.e. field assignment),
in the first case the setter has type
(A -> void) and in the second (B -> void). By contravariance
(A -> void) <: (B -> void) so we cannot have D <: C
```

Soundness of Types

ensuring that a type system is not broken

Example: Tootool 0.1 Language

Tootool is a rural community in the central east part of the Riverina [New South Wales, Australia]. It is situated by road, about 4 kilometres east from French Park and 16 kilometres west from The Rock.

Tootool Post Office opened on 1 August 1901 and closed in 1966. [Wikipedia]

unsound

Type System for Tootool 0.1

```
Pos <: Int
```

Neg <: Int

does it type check?

$$q = -5$$

$$p = q$$

$$\Gamma = \{(p, Pos), (q, Neg), (r, Pos), (intSqrt, Pos \rightarrow Pos)\}$$

$$r = intSqrt(p)$$

Runtime error: intSqrt invoked with a negative argument!

What went wrong in *Tootool 0.1*?

Pos <: Int

Neg <: Int

does it type check? – yes def intSqrt(x:Pos) : Pos = { ...} var p : Pos var q : Neg var r : Pos q = -5 $\Gamma = \{(p, Pos), (q, Neg), (r, Pos), p = q$ $\Gamma = \{(p, Pos), (q, Neg), (r, Pos), (q, Pos), (q, Pos), (q, Pos), (q, Po$

r = intSqrt(p)

Runtime error: intSqrt invoked with a negative argument!

x must be able to store any value from T value from T
$$\frac{? \quad \Gamma \vdash e \colon T}{\Gamma \vdash (x = e) \colon void}$$

Cannot use Γ |- e:T to mean "x promises it can store any e \in T"

Recall Our Type Derivation

Pos <: Int

Neg <: Int

$$\begin{array}{c|cccc} & \Gamma \vdash x \colon T & \Gamma \vdash e \colon T \\ \hline & \Gamma \vdash (x = e) \colon void \end{array} \quad \text{assignment}$$

$$\frac{\Gamma \vdash e \colon T & \Gamma \vdash T < \colon T'}{\Gamma \vdash e \colon T'} \quad \text{subtyping}$$

does it type check? - yes

def intSqrt(x:Pos) : Pos = { ...}

var p : Pos

var q : Neg

var r : Pos

$$q = -5$$

 $p = q$
 $i = \{(p, Pos), (q, Neg), (r, Pos), (intSqrt, Pos $\rightarrow Pos)\}$$

r = intSqrt(p)

Runtime error: intSqrt invoked with a negative argument!

Values from p are integers. But p did not promise to store all kinds of integers/ Only positive ones!

 q: Neg
 Neg <: Int</th>

 q: Int

(p=q): void

Corrected Type Rule for Assignment

Pos <: Int

Neg <: Int

 $\frac{\Gamma \vdash x: T \qquad \Gamma \vdash e: T}{\Gamma \vdash (x = e): \ void} \ \text{assignment}$ $\frac{\Gamma \vdash e: T \qquad \Gamma \vdash T <: T'}{\Gamma \vdash e: T'} \ \text{subtyping}$

does it type check? - yes
f intSart(x:Pos) : Pos = {

def intSqrt(x:Pos) : Pos = { ...}

var p : Pos

var q : Neg

var r : Pos

q = -5p = q $i = \{(p, Pos), (q, Neg), (r, Pos), (intSqrt, Pos <math>\rightarrow$ Pos)\}

r = intSqrt(p)

does not type check

x must be able to store any value from T

$$\frac{(x,T) \in \Gamma \qquad \Gamma \vdash e: T}{\Gamma \vdash (x = e): \text{ void}}$$

e can have any value from T

 Γ stores declarations (promises)

How could we ensure that some other programs will not break?

Type System Soundness

Proving Soundness of Type Systems

- Goal of a sound type system:
 - if the program type checks, then it never "crashes"
 - crash = some precisely specified bad behavior
 e.g. invoking an operation with a wrong type
 - dividing one string by another string "cat" / "frog
 - trying to multiply a Window object by a File object
 - e.g. not dividing an integer by zero
- Never crashes: no matter how long it executes
 - proof is done by induction on program execution

Proving Soundness by Induction

- Program moves from state to state
- Bad state = state where program is about to exhibit a bad operation ("cat" / "frog")
- Good state = state that is not bad
- To prove:
 program type checks → states in all executions are good
- Usually need a stronger inductive hypothesis;
 some notion of very good (VG) state such that:
 program type checks → program's initial state is very good
 state is very good → next state is also very good
 state is very good → state is good (not about to crash)

A Simple Programming Language

var x : Pos

var y : Int

var z : Pos

x = 3

position in source

y = -5

z = 4

x = x + z

y = x / z

z = z + x

Initially, all variables have value 1

values of variables:

x = 1

y = 1

z = 1

var x : Pos

var y : Int

var z : Pos

$$x = 3$$

y = -5 position in source

$$z = 4$$

$$x = x + z$$

$$y = x / z$$

$$z = z + x$$

$$x = 3$$

$$y = 1$$

$$z = 1$$

position in source

var x : Pos

var y : Int

var z : Pos

$$x = 3$$

$$y = -5$$

z = 4

x = x + z

y = x / z

z = z + x

$$x = 3$$

$$y = -5$$

$$z = 1$$

position in source

var x : Pos

var y : Int

var z : Pos

$$x = 3$$

$$y = -5$$

$$z = 4$$

$$x = x + z$$

y = x / z

$$z = z + x$$

$$x = 3$$

$$y = -5$$

$$z = 4$$

position in source

```
var x : Pos
```

$$x = 3$$

$$y = -5$$

$$z = 4$$

$$x = x + z$$

$$y = x / z$$

z = z + x

$$x = 7$$

$$y = -5$$

$$z = 4$$

```
var x : Pos
var y : Int
var z : Pos
x = 3
y = -5
z = 4
x = x + z
y = x / z
z = z + x
position in source
```

values of variables:

$$x = 7$$

$$y = 1$$

$$z = 4$$

formal description of such program execution is called operational semantics

Operational semantics

Operational semantics gives meaning to programs by describing how the program state changes as a sequence of steps.

- big-step semantics: consider the effect of entire blocks
- <u>small-step semantics</u>: consider individual steps (e.g. z = x + y)

```
V: set of variables in the program
```

pc: integer variable denoting the program counter

g: $V \rightarrow Int$ function giving the values of program variables

(g, pc) program state

Then, for each possible statement in the program we define how it changes the program state.

Example: z = x+y

$$(g, pc) \rightarrow (g', pc + 1)$$
 s. t. $g' = g[z := g(x)+g(y)]$

Type Rules of Simple Language

Programs:

var x₁ : Pos $var x_2 : Int$

 $var x_n : Pos$

variable declarations var x: Pos (strictly positive) or var x: Int

followed by

 $X_i = X_i$ $x_{p} = x_{q} + x_{r}$ $x_{a} = x_{b} / x_{c}$ $x_{p} = x_{q} + x_{r}$ $x_{p} = x_{q} + x_{r}$

statements of one of the forms

(No complex expressions)

Type rules:

$$\Gamma = \{ (x_1, Pos), (x_2, Int), \dots (x_n, Pos) \}$$

Pos <: Int

$$\frac{(x,T) \in \Gamma \qquad \Gamma \vdash e : T}{\Gamma \vdash (x=e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T} \quad \frac{e_1 : Int}{e_1 + e_2 : Int}$$

k: Pos -k: Int

Bad State: About to Divide by Zero (Crash)

```
\begin{array}{l} \text{var } x : \text{Pos} \\ \text{var } y : \text{Int} \\ \text{var } z : \text{Pos} \\ \text{x} = 1 \\ \text{y} = -1 \\ \text{z} = x + y \\ \text{x} = x + z \\ \text{y} = x / z \end{array} \qquad \begin{array}{l} \text{values of variables:} \\ \text{x} = 1 \\ \text{y} = -1 \\ \text{z} = 0 \end{array}
```

Definition: state is *bad* if the next instruction is of the form $x_i = x_j / x_k$ and x_k has value 0 in the current state.

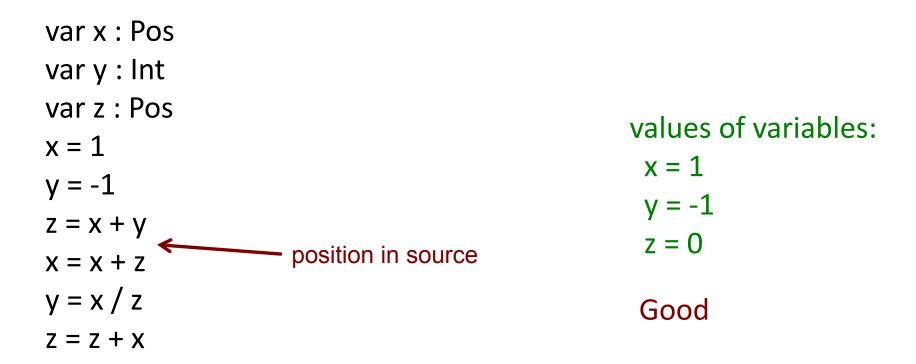
Good State: Not (Yet) About to Divide by Zero

var x : Pos var y : Int var z : Pos x = 1 y = -1 z = x + y x = x + z y = x / z z = z + xvalues of variables: x = 1 y = -1z = 1Good

Definition: state is good if it is not bad.

Definition: state is *bad* if the next instruction is of the form $x_i = x_i / x_k$ and x_k has value 0 in the current state.

Good State: Not (Yet) About to Divide by Zero



Definition: state is *good* if it is not *bad*.

Definition: state is *bad* if the next instruction is of the form $x_i = x_j / x_k$ and x_k has value 0 in the current state.

Moved from Good to Bad in One Step!

Being good is not preserved by one step, not inductive! It is very local property, does not take future into account.

var x : Pos var y : Int var z : Pos x = 1 y = -1 z = x + y x = x + z y = x / zposition in source z = z + xvalues of variables: x = 1 y = -1z = 0

Definition: state is *good* if it is not *bad*.

Definition: state is *bad* if the next instruction is of the form $x_i = x_j / x_k$ and x_k has value 0 in the current state.

Being Very Good: A Stronger Inductive Property

var x : Pos var y : Int var z : Pos x = 1This state is already not *very good*. x = 1y = -1We took future into account. y = -1z = x + yx = x + zposition in source y = x / zz = z + x

values of variables:

 $z = 0 \notin Pos$

Definition: state is *good* if it is not about to divide by zero.

Definition: state is *very good* if each variable belongs to the domain determined by its type (if z:Pos, then z is strictly positive).

If you are a little typed program, what will your parents teach you?

If you type check and succeed:

- you will be very good from the start
- if you are very good, then you will remain very good in the next step
- If you are very good, you will not crash

Hence, please type check, and you will never crash! Soundnes proof = defining "very good" and checking the properties above.

Definition of Simple Language

Programs:

var x₁ : Pos $var x_2 : Int$

 $var x_n : Pos$

variable declarations

var x: Pos

or

var x: Int

followed by

 $x_i = x_j$

 $x_{p} = x_{q} + x_{r}$ $x_{a} = x_{b} / x_{c}$ $x_{p} = x_{q} + x_{r}$ $x_{p} = x_{q} + x_{r}$

statements of one of the forms

(No complex expressions)

Type rules:

 $\Gamma = \{ (x_1, Pos),$ (x_2, Int) ,

 (x_n, Pos)

Pos <: int

$$\frac{(x,T) \in \Gamma \qquad \Gamma \vdash e : T}{\Gamma \vdash (x=e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T} \quad \frac{e_1 : Int}{e_1 + e_2 : Int}$$

 $\begin{array}{c|c} e_1:Int & e_2:Pos \\ \hline e_1/e_2:Int & e_1+e_2:Pos \\ \end{array}$

k: Pos -k: Int

Checking Properties in Our Case

Holds: in initial state, variables are =1

∈ Pos

- If you type check and succeed:
 - you will be very good from the start.
 - if you are very good, then you will remain very good in the next step
 - If you are very good, you will not crash.

If next state is x / z, type rule ensures z has type Pos Because state is very good, it means $z \in Pos$ so z is not 0, and there will be no crash.

Definition: state is *very good* if each variable belongs to the domain determined by its type (if z:Pos, then z is strictly positive).

Example Case 1

Assume each variable belongs to its type.

```
var x : Pos
var y : Pos
var z : Pos
y = 3
z = 2
z = x + y
x = x + z
y = x / z
the next statement is: z=x+y
z = z + x
where x,y,z are declared Pos.
```

values of variables:

x = 1

y = 3

z = 2

Goal: prove that again each variable belongs to its type.

- variables other than z did not change, so belong to their type
- z is sum of two positive values, so it will have positive value

Example Case 2

Assume each variable belongs to its type.

```
var x : Pos
var y : Int
var z : Pos
                                                   values of variables:
y = -5
                                                    x = 1
z = 2
                                                    y = -5
                     position in source
z = x + y
                                                    7 = 2
X = X + Z
y = x / z
               the next statement is: z=x+y
               where x,z declared Pos, y declared Int
Z = Z + X
```

Goal: prove that again each variable belongs to its type. this case is impossible, because z=x+y would not type check How do we know it could not type check?

Must Carefully Check Our Type Rules

var x : Pos

var y : Int

var z : Pos

y = -5

z = 2

z = x + y

X = X + Z

y = x / z

Z = Z + X

Conclude that the only

types we can derive are:

x : Pos, x : Int

y:Int

x + y : Int

Cannot type check

z = x + y in this environment.

Type rules:

$$\Gamma = \{ (x_1, Pos), (x_2, Int),$$

 (x_n, Pos)

Pos <: int

$$\frac{(x,T) \in \Gamma \qquad \Gamma \vdash e : T}{\Gamma \vdash (x=e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T} \quad \frac{e_1 : Int}{e_1 + e_2 : Int}$$

$$\frac{e_1:Int \qquad e_2:Pos}{e_1/e_2:Int} \qquad \frac{e_1:Pos \qquad e_2:Pos}{e_1+e_2:Pos}$$

$$e_1: Pos$$
 $e_2: Pos$

k: Pos

-k: Int

We would need to check all cases (there are many, but they are easy)

Back to the start

$$\frac{\Gamma \vdash x : T \qquad \Gamma \vdash e : T}{\Gamma \vdash (x = e) : void}$$

$$\frac{\Gamma \vdash x : T \qquad T <: T'}{\Gamma \vdash x : T'}$$

$$\frac{(x,T) \in \Gamma}{\Gamma \vdash x : T}$$

$$e_1: Int \qquad e_2: Int$$
$$e_1 + e_2: Int$$

$$e_1: Int \qquad e_2: Pos$$

$$e_1/e_2: Int$$

$$e_1: Pos \qquad e_2: Pos$$
$$e_1 + e_2: Pos$$

Does the proof still work?

If not, where does it break?

Remark

We used in examples Pos <: Int

Same examples work if we have

```
class Int { ... }
class Pos extends Int { ... }
```

and is therefore relevant for OO languages

What if we want more complex types?

```
class A { }

    Should it type check?

class B extends A

    Does this type check in Java?

  void foo() { }
                         can you run it?

    Does this type check in Scala?

class Test {
  public static void main(String[]
args) {
    B[] b = new B[5];
    A[] a;
    a = b;
    System.out.println("Hello,");
    a[0] = new A();
    System.out.println("world!");
    b[0].foo();
```

What if we want more complex types?

Suppose we add to our language a reference type:

class Ref[T](var content : T)

Programs:

 $var x_1 : Pos$

 $var x_2 : Int$

var x₃ : Ref[Int]

 $var x_4 : Ref[Pos]$

x = y

x = y + z

x = y / z

x = y + z.content

x.content = y

Exercise 1:

Extend the type rules to use with

Ref[T] types.

Show your new type system is

sound.

Exercise 2:

Can we use the subtyping rule?
If not, where does the proof break?

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

class Ref[T](var content : T)

Can we use the subtyping rule

$$\frac{T <: T'}{Ref[T] <: Ref[T']} \qquad \frac{Pos <: Int}{Ref[Pos] <: Ref[Int]}$$

```
var x : Ref[Pos]
var y : Ref[Int]
var z : Int
```

x.content = 1

y.content = -1

y = xy.content = 0z = z / x.content

$$\frac{\Gamma \vdash x : Ref[Pos]}{(x, Ref[Int]) \in \Gamma} \qquad \Gamma \vdash y : Ref[Int]$$

$$(y=x): void$$

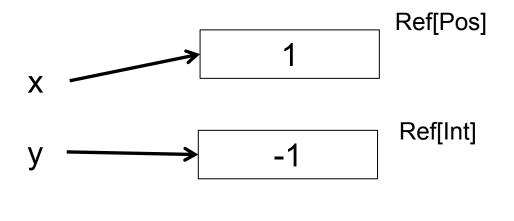
type checks

class Ref[T](var content : T)

Can we use the subtyping rule

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

var x : Ref[Pos]
var y : Ref[Int]
var z : Int
x.content = 1
y.content = -1
y = x
y.content = 0
z = z / x.content



class Ref[T](var content : T)

Can we use the subtyping rule

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

var x : Ref[Pos]

var y : Ref[Int]

var z : Int

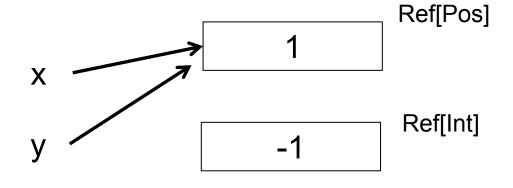
x.content = 1

y.content = -1

y = x

y.content = 0

z = z / x.content



class Ref[T](var content : T)

Can we use the subtyping rule

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

var x : Ref[Pos]

var y : Ref[Int]

var z : Int

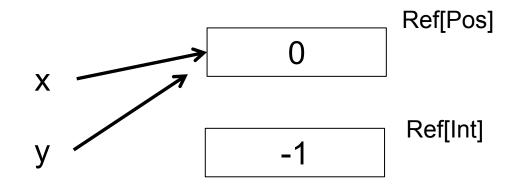
x.content = 1

y.content = -1

y = x

y.content = 0

z = z / x.content



CRASHES

Analogously

class Ref[T](var content : T)

Can we use the converse subtyping rule

$$\frac{T <: T'}{Ref[T'] <: Ref[T]}$$

var x : Ref[Pos]

var y : Ref[Int]

var z : Int

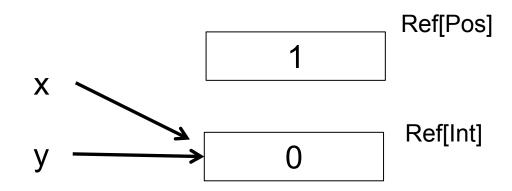
x.content = 1

y.content = -1

x = y

y.content = 0

z = z / x.content



CRASHES

Mutable Classes do not Preserve Subtyping

```
var x : Ref[T]
var y : Ref[T']
...

x = y ← type checks only if T=T'
...
```

Same Holds for Arrays, Vectors, all mutable containers

Even if T <: T',

Array[T] and Array[T'] are unrelated types

```
var x : Array[Pos](1)
var y : Array[Int](1)
var z : Int
x[0] = 1
y[0] = -1
y = x
y[0] = 0
z = z / x[0]
```

Case in Soundness Proof Attempt

class Ref[T](var content : T)

Can we use the subtyping rule

$$\frac{T <: T'}{Ref[T] <: Ref[T']}$$

var x : Ref[Pos]

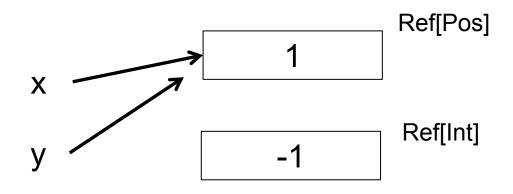
var y : Ref[Int]

var z : Int

x.content = 1

y.content = -1

y = x y.content = 0 z = z / x.content



prove each variable belongs to its type: variables other than y did not change.. (?!)

Mutable vs Immutable Containers

- Immutable container, Coll[T]
 - has methods of form e.g. get(x:A): T
 - if T <: T', then Coll[T'] has get(x:A) : T'</pre>
 - we have (A → T) <: (A→ T') covariant rule for functions, so Coll[T] <: Coll[T']</p>
- Write-only data structure have
 - setter-like methods, set(v:T) : B
 - if T <: T', then Container[T'] has set(v:T) : B</pre>
 - would need (T → B) <: (T' → B)
 contravariance for arguments, so Coll[T'] <: Coll[T]
- Read-Write data structure need both, so they are invariant, no subtype on Coll if T <: T'