
Arrays

Using array as an expression, on the right-hand side

Assigning to an array



Example with Arrays

def next(a : Array[Int], k : Int) : Int = {

a[k] = a[a[k]]

}

Given  = {(a, Array(Int)), (k, Int)},  check  ⊢ a[k] = a[a[k]]: void

void



Type Rules (1)

variable constant

function application

plus

if

assignmentwhile



Type Rules (2)

array use

array
assignment

block



Type Rules (3)

field use

field assignment

c - top-level environment of class C

class C { 

var x: Int; 

def m(p: Int): Boolean = {…}

}

c = { (x, Int), (m, C x Int  Boolean)}

method invocation

C



Does this program type check?
class Rectangle {
var width: Int
var height: Int
var xPos: Int
var yPos: Int
def area(): Int = { 
if (width > 0 && height > 0) 
width * height 

else 0 
} 
def resize(maxSize: Int) { 
while (area > maxSize) { 
width = width / 2 
height = height / 2 

}
}

}

Γ0 =

w: Int, h: Int,
x: Int, y: Int,

𝑎𝑟𝑒𝑎 ∶ Unit → Int,
𝑟𝑒𝑠𝑖𝑧𝑒 ∶ Int → Unit

Type check: area 

Type check: resize



Semantics of Types

• Operational view: Types are named entities 

– such as the primitive types (Int, Bool etc.) and 
explicitly declared classes, traits …

– their meaning is given by methods they have

– constructs such as inheritance establish 
relationships between classes

• Mathematically, Types are sets of values

– Int = { ..., -2, -1, 0, 1, 2, ... }

– Boolean = { false, true }

– Int Int = { f : Int -> Int | f is computable }



Types as Sets

• Sets so far were disjoint

• Sets can overlap

Boolean

true, false

String

“Richard”  “cat”

Int  Int

Int  Pos

Int

Pos  (1, 2)

Neg (-1)

16 bit class C

class F

class D
class E

F extends D, 

D extends C

C

ED

F

C represents not only declared C,

but all possible extensions as well



SUBTYPING



Subtyping

• Subtyping corresponds to subset

• Systems with subtyping have non-disjoint sets

• T1 <: T2 means T1 is a subtype of T2 

– corresponds to T1  T2 in sets of values

• Rule for subtyping: analogous to set reasoning
In terms of sets

Int
Pos



Types for Positive and Negative Ints
Int = { ... , -2, -1, 0, 1, 2, ... }
Pos = { 1, 2, ... }      (not including zero)

Neg = { ..., -2, -1 } (not including zero)

Pos <: Int

Neg <: Int
Pos  Int

Neg  Int

(y not zero)

(x/y well defined)

types: sets:



Rules for Neg, Pos, Int

Γ ⊢ x: Pos Γ ⊢ y: Neg
Γ ⊢ x + y: ? ? ?

Γ ⊢ x: Pos Γ ⊢ y: Neg
Γ ⊢ x ∗ y: ? ? ?

Γ ⊢ x: Pos Γ ⊢ y: Int
Γ ⊢ x + y: ? ? ?

Γ ⊢ x: Pos Γ ⊢ y: Int
Γ ⊢ x ∗ y: ? ? ?



More Rules

More rules for division?



Making Rules Useful

• Let x be a variable

var x : Int

var y : Int

if (y > 0) {

if (x > 0) {

var z : Pos = x * y

res = 10 / z

} } type system proves: no division by zero





Subtyping Example

def f(x:Int) : Pos = { 

if (x < 0) –x else x+1

}

var p : Pos

var q : Int

q = f(p)

Given:
Pos <: Int

 ⊢ f: Int Pos

Does this statement type check?



Subtyping Example

def f(x:Pos) : Pos = { 

if (x < 0) –x else x+1

}

var p : Int

var q : Int

q = f(p) Does this statement type check?

does not type check



What Pos/Neg Types Can Do

def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

(p1*q1, q1*q2)

}

def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int,Pos) {

(p1*q2 + p2*q1, q1*q2)

}

def printApproxValue(p : Int, q : Pos) = {

print(p/q) // no division by zero

}

More sophisticated types can track intervals of numbers and ensure 
that a program does not crash with an array out of bounds error. 



Subtyping and Product Types



Subtyping for Products

T1 <: T2 implies for all e: 

So, we might as well add:

covariant subtyping for pair types

denoted (T1, T2) or Pair[T1, T2]

Type for a 

tuple:



Analogy with Cartesian Product

A x B = { (a, b) | a  A, b  B}

T1

T2

T1’

T2’



Subtyping and Function Types



Subtyping for Function Types

Consequence:

contravariance covariance

T1 <: T2 implies for all e: 

( ( ))

as if   |- m:  T’1 x … x Tn’   T’



A function type is a set of functions (function 
space) defined as follows:

T1  T2 = { f|  x. (x  T1  f(x)  T2)}

We can prove

Function Space as Set

contravariance because

x  T1 is left of implication



Proof T1  T2 = { f |  x. (x  T1  f(x)  T2)}



Subtyping for Classes

• Class C contains a collection of methods

• For class sub-typing, we require that methods 
named the same are subtypes



Example 

class C {
def m(x : T1) : T2 = {...}

}
class D extends C {
override def m(x : T’1) : T’2 = {...}

}

D <: C   so need to have (T'1  T'2) <: (T1  T2)

Therefore, we need to have:

T’2 <: T2 (result behaves like the class)

T1 <: T’1 (argument behaves opposite)



Mutable and Immutable Fields

• We view field var f: T as two methods

– getF : T T

– setF(x:T): void      T  void

• For val f: T (immutable): we have only getF



Could we allow this?

class A {}  class B extends A {…} B <: A

class C {
val x : A = …

}
class D extends C {
override val x : B = …

}

Because B <: A, this is a valid way for D to extend C ( D <: C)

Substitution principle:

If someone uses z:D thinking it is z:C, the fact that they read 
z.x and obtain B as a specific kind of A is not a problem.



What if x is a var ?

class A {}  class B extends A {…} B <: A

class C {
var x : A = …

}
class D extends C {
override var x : B = … ?!?

}

If we now imagine the setter method (i.e. field assignment), 
in the first case the setter has type, for D <: C

• B <: A, because of setter (reading values)

• (B -> void) <: (A -> void), so by contravariance A <: B

• Thus A=B



Soundness of Types

ensuring that a type system 
is not broken
For every program and every input,
if it type checks, it does not break.


