Arrays

Using array as an expression, on the right-hand side

$$\begin{array}{ccc} \Gamma \vdash a: \ Array(T) & \Gamma \vdash i: \ Int \\ & \\ & \\ & \\ \Gamma \vdash a[i]:T \end{array}$$

Assigning to an array

$$\begin{array}{ccc} \Gamma \vdash a: \ Array(T) & \Gamma \vdash i: \ Int & \Gamma \vdash e: \ T \\ & \Gamma \vdash (a[i] \ = e): \ void \end{array}$$

Example with Arrays

Given $\Gamma = \{(a, Array(Int)), (k, Int)\}, check \Gamma \vdash a[k] = a[a[k]]: void$

Type Rules (1) $\frac{(\mathbf{x}: \mathbf{T}) \in \Gamma}{\Gamma \vdash \mathbf{x}: \mathbf{T}} \quad \text{variable}$ constant IntConst(k): Int $\Gamma \vdash e_1 : T_1 \ldots \Gamma \vdash e_n : T_n \qquad \Gamma \vdash f : (T_1 \times \cdots \times T_n \to T)$ $\Gamma \vdash f(e_1, \ldots, e_n) : T$ function application $\frac{\Gamma \vdash e_1: \text{ Int } \quad \Gamma \vdash e_2: \text{ Int }}{\Gamma \vdash (e_1 + e_2): \text{ Int }} \quad \mathsf{plus } \quad \frac{\Gamma \vdash e_1: \text{ String } \quad \Gamma \vdash e_2: \text{ String }}{\Gamma \vdash (e_1 + e_2): \text{ String }}$ $\Gamma \vdash b$: Boolean $\Gamma \vdash e_1 : T \qquad \Gamma \vdash e_2 : T$ if $\Gamma \vdash (if(b) \ e_1 \ else \ e_2) : T$ $(\mathbf{x}, \mathbf{T}) \in \Gamma$ $\Gamma \vdash \mathbf{e}: \mathbf{T}$ $\Gamma \vdash b$: Boolean $\Gamma \vdash s$: void $\Gamma \vdash$ (while(b) s): void $\Gamma \vdash (x=e)$: void while assignment

Type Rules (2)

 $\Gamma \vdash \mathbf{a}[\mathbf{i}] = \mathbf{e}$

Type Rules (3) Γ^{c} - top-level environment of class C class C { var x: Int; def m(p: Int): Boolean = {...} } $\Gamma^{c} = \{ (x, Int), (m, C \times Int \rightarrow Boolean) \}$ $\Gamma \vdash e: C \quad \Gamma^C \vdash m: \mathbf{C} \times T_1 \times \ldots \times T_n \to T_{n+1} \qquad \Gamma \vdash e_i: T_i \quad 1 \le i \le n$ $\Gamma \vdash e.m(e_1, \ldots, e_n) : T_{n+1}$ method invocation $\frac{\Gamma \vdash e: C \qquad \Gamma^C \vdash f: T}{\Gamma \vdash e.f: T} \quad \text{field use}$ $\Gamma \vdash e: \underline{C} \qquad \underline{\Gamma^C \vdash f: T} \qquad \underline{\Gamma \vdash x: T}$ field assignment $\Gamma \vdash (e.f = x)$: void

Does this program type check?

class Rectangle { **var** width: Int **var** height: Int var xPos: Int var yPos: Int def area(): Int = { **if** (width > 0 && height > 0) width * height else 0 def resize(maxSize: Int) { while (area > maxSize) { width = width / 2height = height / 2

$$\Gamma_{0} = \begin{cases} w: Int, h: Int, \\ x: Int, y: Int, \\ area : Unit \rightarrow Int, \\ resize : Int \rightarrow Unit \end{cases}$$

Type check: area

Type check: resize

Semantics of Types

- Operational view: Types are named entities
 - such as the primitive types (Int, Bool etc.) and explicitly declared classes, traits ...
 - their meaning is given by methods they have
 - constructs such as inheritance establish relationships between classes
- Mathematically, Types are sets of values
 - $Int = \{ ..., -2, -1, 0, 1, 2, ... \}$
 - Boolean = { false, true }
 - $\text{Int} \rightarrow \text{Int} = \{ f : \text{Int} \rightarrow \text{Int} \mid f \text{ is computable} \}$

Types as Sets

- Sets so far were disjoint
 - Boolean true, false

Sets can overlap

SUBTYPING

Subtyping

- Subtyping corresponds to subset
- Systems with subtyping have non-disjoint sets
- $T_1 <: T_2$ means T_1 is a subtype of T_2 - corresponds to $T_1 \subseteq T_2$ in sets of values
- Rule for subtyping: analogous to set reasoning

Types for Positive and Negative Ints						
Int = { , -2, -1, 0, 1, 2, }						
POS = { 1, 2, … } (not including zero)						
$Neg = \{ \dots, -2, -1 \} (not including zero)$						
types: Pos <: Int Neg <: Int	sets: Pos ⊆ Int Neg ⊆ Int					
$\frac{\Gamma \vdash x: \operatorname{Pos} \qquad \Gamma \vdash y: \operatorname{Pos}}{\Gamma \vdash x + y: \operatorname{Pos}}$	$\begin{array}{cc} x \in Pos & y \in Pos \\ \hline x + y \in Pos \end{array}$					
$\frac{\Gamma \vdash x: \operatorname{Pos} \qquad \Gamma \vdash y: \operatorname{Neg}}{\Gamma \vdash x * y: \operatorname{Neg}}$	$\begin{array}{ccc} x \in Pos & y \in Neg \\ \hline x * y \in Neg \end{array}$					
$\frac{\Gamma \vdash x: \operatorname{Pos} \qquad \Gamma \vdash y: \operatorname{Pos}}{\Gamma \vdash x \ / \ y: \operatorname{Pos}}$	$\begin{array}{cc} x \in Pos & y \in Pos \\ \hline x \ / \ y \in Pos & \text{(x/y well defined)} \end{array}$					

Rules for Neg, Pos, Int

 $\frac{\Gamma \vdash x: \text{Pos} \quad \Gamma \vdash y: \text{Neg}}{\Gamma \vdash x + y: ???}$

 $\frac{\Gamma \vdash x: \text{Pos} \quad \Gamma \vdash y: \text{Neg}}{\Gamma \vdash x * y: ???}$

 $\frac{\Gamma \vdash x: \text{Pos} \quad \Gamma \vdash y: \text{Int}}{\Gamma \vdash x + y: ???}$

 $\frac{\Gamma \vdash x: \text{Pos} \quad \Gamma \vdash y: \text{Int}}{\Gamma \vdash x * y: ???}$

More Rules

$$\frac{\Gamma \vdash x: \text{ Neg } \qquad \Gamma \vdash y: \text{ Neg }}{\Gamma \vdash x * y: \text{ Pos}}$$

$$\frac{\Gamma \vdash x: \text{ Neg } \qquad \Gamma \vdash y: \text{ Neg }}{\Gamma \vdash x + y: \text{ Neg }}$$

More rules for division?

$$\frac{\Gamma \vdash x: \text{ Neg } \quad \Gamma \vdash y: \text{ Neg }}{\Gamma \vdash x \ / \ y: \text{ Pos }}$$

$$\frac{\Gamma \vdash x: \text{ Pos } \quad \Gamma \vdash y: \text{ Neg}}{\Gamma \vdash x \ / \ y: \text{ Neg}}$$

 $\begin{array}{ccc} \Gamma \vdash x: \mbox{ Int } & \Gamma \vdash y: \mbox{ Neg } \\ \hline & \Gamma \vdash x \ / \ y: \mbox{ Int } \end{array}$

Making Rules Useful

• Let x be a variable

$$\begin{array}{c|cccc} \Gamma \vdash x: \mbox{ Int } & \Gamma \oplus \{(x, Pos)\} \vdash e_1: T & \Gamma \vdash e_2: T \\ \hline & \Gamma \vdash (\mbox{if } (x > 0) \ e_1 \ \mbox{else} \ e_2): \ T \\ \hline & \Gamma \vdash x: \mbox{ Int } & \Gamma \vdash e_1: T & \Gamma \oplus \{(x, Neg)\} \vdash e_2: T \\ \hline & \Gamma \vdash (\mbox{if } (x > = 0) \ e_1 \ \mbox{else} \ e_2): \ T \\ \hline & \text{var } x \ : \ \mbox{Int } & \\ & \text{if } (x > 0) \ \\ & \mbox{if } (x > 0) \ \\ & \mbox{var } z \ : \ \mbox{Pos } = x \ * y \\ & \mbox{res } = 10 \ / \ z \\ \hline & \mbox{type system proves: no division by zero} \end{array}$$

Subtyping Example

Subtyping Example

```
def f(x:Pos) : Pos = {
    if (x < 0) -x else x+1
}
var p : Int
var q : Int
q = f(p) ← Does this statement type check?</pre>
```

does not type check

What Pos/Neg Types Can Do

```
def multiplyFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int, Pos) {
 (p1*q1, q1*q2)
}
def addFractions(p1 : Int, q1 : Pos, p2 : Int, q2 : Pos) : (Int, Pos) {
 (p1*q2 + p2*q1, q1*q2)
}
def printApproxValue(p : Int, q : Pos) = {
 print(p/q) // no division by zero
}
```

More sophisticated types can track intervals of numbers and ensure that a program does not crash with an array out of bounds error.

Subtyping and Product Types

Subtyping for Products

 $T_1 <: T_2$ implies for all e: $\Gamma \vdash e : T_1$ $\Gamma \vdash e : T_2$

Type for a tuple:

$$\frac{x:T_1 \quad y:T_2}{(x,y):T_1 \times T_2}$$

$$\underbrace{\begin{array}{cccc}
 x:T_1 & T_1 <: T'_1 \\
 \underline{x:T'_1} & y:T_2 & T_2 <: T'_2 \\
 \underline{y:T'_2} \\
 \underline{y:T'_2}$$

So, we might as well add:

$$\frac{T_1 <: T'_1 \qquad T_2 <: T'_2}{T_1 \times T_2 <: T'_1 \times T'_2}$$

covariant subtyping for pair types denoted (T_1, T_2) or Pair $[T_1, T_2]$

Analogy with Cartesian Product

$$\frac{T_1 <: T'_1 \qquad T_2 <: T'_2}{T_1 \times T_2 <: T'_1 \times T'_2}$$

$$\frac{T_1 \subseteq T_1' \qquad T_2 \subseteq T_2'}{T_1 \times T_2 \subseteq T_1' \times T_2'}$$

 $A \times B = \{ (a, b) \mid a \in A, b \in B \}$

Subtyping and Function Types

Subtyping for Function Types

 $T_1 <: T_2$ implies for all e:

Γ	\vdash	e	•	T_1
Γ	\vdash	e	:	T_2

Function Space as Set

A function type is a set of functions (function space) defined as follows:

Proof

$$T_{1} \rightarrow T_{2} = \{ f \mid \forall x. (x \in T_{1} \rightarrow f(x) \in T_{2}) \}$$

$$\frac{T'_{1} \subseteq T_{1} \qquad T_{2} \subseteq T'_{2}}{T_{1} \rightarrow T_{2} \subseteq T'_{1} \rightarrow T'_{2}}$$

Subtyping for Classes

• Class C contains a collection of methods

• For class sub-typing, we require that methods named the same are subtypes

Example

```
class C {
    def m(x : T<sub>1</sub>) : T<sub>2</sub> = {...}
}
class D extends C {
    override def m(x : T'<sub>1</sub>) : T'<sub>2</sub> = {...}
}
```

D <: C so need to have $(T'_1 \rightarrow T'_2) <: (T_1 \rightarrow T_2)$ Therefore, we need to have:

 $T'_2 <: T_2$ (result behaves like the class) $T_1 <: T'_1$ (argument behaves opposite)

Mutable and Immutable Fields

- We view field var f: T as two methods
 - getF : T T
 - setF(x:T): void $T \rightarrow$ void
- For val f: T (immutable): we have only getF

Could we allow this?

```
class A {} class B extends A {...} B <: A
class C {
 val x : A = ...
}
class D extends C {
 override val x : B = ...
}
Because B <: A, this is a valid way for D to extend C ( D <: C)</pre>
```

Substitution principle:

If someone uses z:D thinking it is z:C, the fact that they read z.x and obtain B as a specific kind of A is not a problem.

What if x is a var ?

```
class A {} class B extends A {...} B <: A
class C {
    var x : A = ...
}
class D extends C {
    override var x : B = ...
}</pre>
```

If we now imagine the setter method (i.e. field assignment), in the first case the setter has type, for D <: C

- B <: A, because of setter (reading values)
- (B -> void) <: (A -> void), so by contravariance A <: B
- Thus A=B

Soundness of Types

ensuring that a type system is not broken For every program and every input, if it type checks, it does not break.