
Exercises on Chomsky Normal Form 
and CYK parsing

1. Convert the following grammar to CNF

S -> A ( S ) B | “”

A -> S | S B | x | “”

B -> S B | y

This is exercise is available in the “grammar tutoring system”

http://laraserver3.epfl.ch:9000

• Select exercise type “CNF Conversion” -> choose the problem 
“Exercise 1 of lecturecise 12”

• Make sure you create a new start symbol S1 and add the 
production  S1 -> S | “” to your grammar before CNF 
conversion as the start symbol ‘S’ is nullable and also appears 
on the right hand side

http://laraserver3.epfl.ch:9000/


Exercise 2

Which of the following properties of a grammar are preserved 
by the “Epsilon Production Elimination” algorithm

a. Ambiguity 

If a grammar is “ambiguous” does it remain ambiguous after 
removing epsilon productions ?

b. LL(1) 

c. No Left Recursion 

We define left recursion as existence of productions of the form

– N -> N 𝛼 (or)

– 𝑁 → 𝑁1 𝛼1 , 𝑁1 → 𝑁2 𝛼2, ⋯ , 𝑁𝑛 → N 𝛼𝑛

d. Unambiguity ?

No, counter-example ?

No, counter-example ?

No, counter-example ?

Yes, proof ?



Exercise 2(a) - Solution

• Ambiguity : If a grammar is “ambiguous” does it remain 
ambiguous after removing epsilon productions ?

• No, it need not. Eg. consider the following ambiguous 
grammar 
– S -> a A | a

– A -> b | “”

– The grammar has two parse trees for the string: a 

• After removing epsilon productions we get
– S -> a A | a

– A -> b

– There is exactly one parse tree for “a“



Exercise 2(b) - Solution

• LL(1): If a grammar is LL(1) does it remain LL(1) after 
removing epsilon productions ?

• No, it need not. Eg. consider the following LL(1) grammar
– S -> a S b | “”

• After removing epsilon productions we get
– S’ -> S | “” 

– S -> a S b | a b

– Note: we have created a new start symbol as ‘S’ was nullable and 
appeared on the right hand side

– The grammar is not LL(1) as First(a S b) and First(a b) intersect



Exercise 2(c) - Solution

• No left recursion: If a grammar has no left recursion does it 
remain without left recursion after removing epsilon 
productions ?

• No, it need not. Eg. consider the following non-left recursive 
grammar
– S -> B S a |a 

– B -> “” | b

• After removing epsilon productions we get
– S -> B S a | S a | a 

– B -> “” | b

– The production S -> S a is a left recursive production

• Note: this also means that we have to eliminate epsilons before 
removing left recursion using the approach described in lecturecise
10



Exercise 2(d) - Solution
Unambiguity: If a grammar is unambiguous does it remain 
unambiguous after removing epsilon productions ?

• Yes. Proof: Let G’ be obtained from G by eliminating epsilon productions

Let’s prove the contra-positive form: if there are two left most derivations for 
a word w in G’ then there will be two left most derivations for w in G

– Let D1 and D2 be two left most derivations for the word w in G’

– If all the productions used in D1 and D2 are also present in the G then D1 and 
D2 are also feasible in G, which will imply the claim.

– Therefore, say D1 or D2 use productions denoted using: 𝐴𝑖 → 𝛾𝑗 that did not 

belong to G. 

– For each 𝐴𝑖 → 𝛾𝑗 (except when 𝐴𝑖 is a start symbol), there exists 𝐴𝑖 → 𝛼𝑗
belonging to G such that 𝛾𝑗 is obtained from 𝛼𝑗 by removing nullable non-

terminals from some positions (denoted by say  𝑋𝑗).

– Hence, we can create new derivations D1’ and D2’ from D1 and D2 by 
replacing every use of the rule 𝐴𝑖 → 𝛾𝑗 by 𝐴 → 𝛼𝑗 and deriving empty strings 

(using productions of G) from non-terminals in positions  𝑋𝑗



Exercise 2(d) - Solution

• If  𝐴𝑖 was the start symbol of G’ and it does not belong to G then we remove the 
derivation 𝐴𝑖 → 𝑆 at the start of G’ and replace it with the start of symbol S of G

• Will the resulting derivations D1’ and D2’ be distinct ?

• Consider the point where D1 and D2 diverge. Let

– D1: 𝑆 ⇒∗ 𝑥𝐵𝛼 ⇒ 𝑥𝛽1𝛼 ⇒∗ 𝑤

– D2: 𝑆 ⇒∗ 𝑥𝐵𝛼 ⇒ 𝑥𝛽2𝛼 ⇒∗ 𝑤

• If neither 𝐵 → 𝛽1 or 𝐵 → 𝛽2 are of the form 𝐴𝑖 → 𝛾𝑗 then D1’ and D2’ will also 

diverge at the same point as we preserve 𝐵 → 𝛽1 and 𝐵 → 𝛽2 in D1’, D2’ respec.

• Case (i), say

– D1: 𝑆 ⇒∗ 𝑥𝐴𝑖𝛼 ⇒ 𝑥𝛾𝑗𝛼 ⇒∗ 𝑤

– D2:  𝑆 ⇒∗ 𝑥𝐴𝑖𝛼 ⇒ 𝑥𝛽𝛼 ⇒∗ 𝑤 , where 𝐴𝑖 → 𝛽 is a rule in G as well

• 𝛾𝑗 is  replaced by 𝛼𝑗 in D1’ and some non-terminals in 𝛼𝑗 derive epsilon. However, 

no non-terminal in 𝛽 derives epsilon in D2 as D2 is a derivation of G’ that has no 
epsilon productions except for the start symbol. By construction, the start symbol 
of G’ will never appear on the right hand side if it is nullable. 

• Hence, 𝐴𝑖 → 𝛽 will be preserved in D2’ and no non-terminal in 𝛽 derives epsilon in 
D2’. Hence, D1’ will differ from D2’ irrespective of  whether 𝛼𝑗 = 𝛽 or not.



Exercise 2(d) - Solution

• Case (ii), say

– D1: 𝑆 ⇒∗ 𝑥𝐴𝑖𝛼 ⇒ 𝑥𝛾𝑗𝛼 ⇒∗ 𝑤

– D2:  𝑆 ⇒∗ 𝑥𝐴𝑖𝛼 ⇒ 𝑥𝛾𝑘𝛼 ⇒∗ 𝑤

• 𝛾𝑗 is  replaced by 𝛼𝑗 in D1’ and 𝛾𝑘 by  𝛼𝑘 in D2’. Since  𝛾𝑗 ≠ 𝛾𝑘 either 𝛼𝑗 and 𝛼𝑘 are 

different or non-terminals at different positions in 𝛼𝑗 and 𝛼𝑘 are reduced  to 

empty string in D1’ and D2’, respectively. Hence, D1’ will differ from D2’



Exercise 3 

Which of the following properties of a grammar are 
preserved by the “Unit Production Elimination” 
algorithm

• Ambiguity 

• Left Recursion

– What about these rules: B -> A | a ,  A -> B ?

• LL(1) 

• Unambiguity 

No, counter-example ?

Yes, proof ?

No

Yes, proof ?



Exercise 3(a) - Solution

• Ambiguity : If a grammar is “ambiguous” does it remain 
ambiguous after removing unit productions ?

• No, it need not. Eg. consider the following ambiguous 
grammar 
– S -> A | a

– A -> a

– There exists two parse tree for a: S -> A -> a and  S -> a

• After removing the unit production we get
– S -> a

– There is exactly one parse tree for “a“



Exercise 3(b) - Solution

• Left recursion: If a grammar has left recursion will it have left 
recursion after removing unit productions ?

• No, it need not. Eg. consider the following left recursive 
grammar
– B -> A | a

– A -> B

• After removing the unit productions (using the graph based 
algorithm described in lecturecise 11) we get
– B -> a

– A -> a



Exercise 3(c) - Solution
• LL(1): If a grammar is LL(1) does it remain LL(1) after removing unit 

productions ?

• Yes. The following is a sketch of the proof (not a complete, rigorous 
proof). 

• Let G’ be obtained from G by eliminating unit productions, we need show that all 
3 properties of LL(1) holds 

• Without loss of generality assume that we are removing only one unit production 
A -> B and B -> 𝛽1 ⋯ 𝛽𝑛

• A -> B will be replaced by A -> 𝛽1 ⋯ 𝛽𝑛
1. Every alternative of A  in G’ will have disjoint first sets. If there is an 

alternative whose first set intersects with 𝛽𝑖 for some i then in G it would 
have intersected with first(B) contradicting the fact that the input grammar is 
LL(1)

2. A will have at most one nullable alternative in G’. If in G, B was A’s nullable
alternative then there will exist exactly one 𝛽𝑖 that is nullable in G (and hence 
in G’) as G is in LL(1). If not,  no 𝛽𝑖 will be nullable in G (and hence in G’). 



Exercise 3(c) – Solution [Cont.]

3. The follow set of every non-terminal except ‘B’ will be the same in G and G’. Note 
that the follow set of non-terminals in 𝛽𝑖 cannot change by adding the production 
A -> 𝛽1 ⋯ 𝛽𝑛 as in both G and G’, 𝑓𝑜𝑙𝑙𝑜𝑤 𝐴 ⊆ 𝑓𝑜𝑙𝑙𝑜𝑤(𝛽𝑖) for each i, and G 
and G’ have same set of nullable non-terminals.

For the non-terminal B, follow(B) in G’ is a subset of follow(B) in G as the 
production A -> B  is removed. However, any reduction in the follow set cannot 
violate LL(1) property. Hence, G’ is also in LL(1)



Exercise 3(d) - Solution
Unambiguity: If a grammar is unambiguous does it remain 
unambiguous after removing unit productions ?
• Yes. Sketch of the proof: Let G’ be obtained from G by eliminating epsilon 

productions

• Let’s prove the contra-positive form: if there are two left most derivations 
for a word w in G’ then there will be two left most derivations for w in G

– Without loss of generality assume that we are removing only one unit production A -> B 
and B -> 𝛽1 ⋯ 𝛽𝑛 . A -> B will be replaced by A -> 𝛽1 ⋯ 𝛽𝑛

– Let D1 and D2 be two left most derivations for the word w in G’

– If all the productions used in D1 and D2 are also present in the G then D1 and D2 are 
also feasible in G, which will imply the claim.

– Therefore, say D1 or D2 use productions denoted using: 𝐴 → 𝛽𝑖 that did not belong to 
G. 

– For each 𝐴 → 𝛽𝑖 there exists a derivation 𝐴 → 𝐵 → 𝛽𝑖 belonging to G we can create 
new derivations D1’ and D2’ from D1 and D2 by replacing every use of the rule 𝐴 → 𝛽𝑖
by the derivation 𝐴 → 𝐵 → 𝛽𝑖

– Are D1’ and D2’ distinct ?



Exercise 3(d) - Solution [Cont.]

• Consider the point where D1 and D2 diverge. Let

– D1: 𝑆 ⇒∗ 𝑥𝐶𝛼 ⇒ 𝑥𝛾1𝛼 ⇒∗ 𝑤

– D2:  𝑆 ⇒∗ 𝑥𝐶𝛼 ⇒ 𝑥𝛾2𝛼 ⇒∗ 𝑤

• If 𝐶 is not 𝐴 or neither of 𝛾1 and 𝛾2 are 𝛽𝑖 for some 𝑖 then D1’ and D2’ will also 
diverge at the same point as we do not change such productions

• Case (i), say

– D1: 𝑆 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝛽𝑖𝛼 ⇒∗ 𝑤

– D2:  𝑆 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝛾2𝛼 ⇒∗ 𝑤

• In this case D1’ will be  𝑆 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝐵𝛼 ⇒ 𝑥𝛽𝑖𝛼 ⇒∗ 𝑤 and D2’ will have 
𝑆 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝛾2𝛼. Moreover, 𝛾2 is not B as A -> B does not belong to G’. Hence, 
D1’ will differ from D2’

• Case (ii), say

– D1: 𝑆 ⇒∗ 𝑥𝐴𝑖𝛼 ⇒ 𝑥𝛽𝑖𝛼 ⇒∗ 𝑤

– D2:  𝑆 ⇒∗ 𝑥𝐴𝑖𝛼 ⇒ 𝑥𝛽𝑗𝛼 ⇒∗ 𝑤

• In this case D1’: 𝑆 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝐵𝛼 ⇒ 𝑥𝛽𝑖𝛼 ⇒∗ 𝑤 and D2’: 𝑆 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝐵𝛼 ⇒

𝑥𝛽𝑗𝛼 ⇒∗ 𝑤 . Hence, D1’ will differ from D2’



Exercise 4

Given a grammar G in CNF, how many steps does it 
require to derive a string of size n.



Exercise 4 -Solution

Intuition

Consider a derivation of a string of length n obtained as follows:

1. Derive a string of exactly n nonterminals from the start symbol, then

2. Expand each nonterminal out to a single terminal.

• To obtain ‘n’ non-terminals from the start symbol, we need to apply 
productions of the form S → AB as that is the only way to generate non-
terminals.  How many times do we have to apply such productions ?

• Application of one such production will increase the number of 
nonterminals by 1, since you replace one nonterminal with two 
nonterminals. 

• Since we start with one nonterminal, we need to repeat this n-1 times. 

• We need n more steps to convert nonterminals to terminals

• Therefore, total number of steps = 2n – 1

• Let’s try to prove this bound  formally



Exercise 4 –Solution [Cont.]

• Denote the number of steps required to derive a string w from a non-
terminal N as NS(N, w)

• If |w| = 1, we need exactly 1 step. NS(N, w) = 1 if |w| = 1

• If |w| > 1, we first apply a production N -> N1 N2 which will derive w.

• Say 𝑁 ⇒∗ 𝑁1 𝑁2 ⇒∗ 𝑥 𝑁2 ⇒∗ 𝑥𝑦 = 𝑤 , 
– where |x| = q (say) and |y| = |w| - q

• Hence,  NS(N,w) = NS(N1, x) + NS(N2, y) + 1 

• We need a closed form for NS(N,w) that depends only on |w|. Say 
NS(N,w) = f(|w|)

• We have,  𝑓 |𝑤| =  
1 𝑖𝑓 |𝑤| = 1

𝑓 𝑞 + 𝑓 𝑤 − 𝑞 + 1 𝑖𝑓 𝑤 > 1

• Where 1 <=  q < |w|

• 2 𝑤 − 1 is the least solution for the above recurrence



Exercise 5

Assume a grammar in CNF has n non-terminals. Show 
that if the grammar can generate a word with a 
derivation having at least 2𝑛 steps, then the recognized 
language should be infinite

(see the pdf file uploaded in the lara wiki along with 
the slides)



Exercise 6

Show the CYK parsing table for the string “aabbab”

for the grammar 

S -> AB| BA | SS | AC | BD

A -> a 

B -> b

C -> SB

D -> SA

What should be done to construct a parse tree for the 
string



Exercise 6 -Solution 

• For generating parse trees, modify the parse table d as below

• Every entry (i,j), i < j, of the table is a triple (N, s, p) which 
means that N accepts the sub-string from index i to j via a 
production of the form p: N -> N1 N2 and N1 accepts the 
substring from index i to (i+s-1) and N2 accepts the substring 
from index (i+s) to j

0 1 2 3 4 5

0 A - - S D S

1 A S C S C

2 B - - -

3 B S C

4 A S

5 B

a a b b a b

0 1 2 3 4 5



Exercise 6 –Solution [Cont.] 

0 1 2 3 4 5

0 A - - (S,1,p4) (D,4,p9) (S,4,p3)

1 A (S,1,p1) (C,2,p8) (S,2,p3) (C,4,p8)

2 B - - -

3 B (S,1,p2) (C,2,p8)

4 A (S,1,p1)

5 B

See next slide for an algorithm for generating 

one parse tree given a table of the above form

S -> AB (p1) | BA (p2) | SS (p3) | AC (p4) | BD (p5)

A -> a (p6)

B -> b (p7)

C -> SB (p8)

D -> SA (p9)



Exercise 6 –solution [Cont.]

Algorithm for generating one parse tree starting from a 
nonterminal N for a sub-string (i,j) 

ParseTree(N, i, j)

• If i = j, if N is in parseTable(i,j) return Leaf(N, w(i,j)) else report  
parse error

• Otherwise, pick an entry (N, s, p) from parseTable(i,j)

• If no such entry exist report that the sub-string cannot be parsed 
and return

• Let p: N -> N1 N2

• leftChild= ParseTree(N1, i, i+s-1)

• rightChild = ParseTree(N2, i+s, j)

• Return Node(N, leftChild, rightChild)


