Exercises on Chomsky Normal Form and CYK parsing

1. Convert the following grammar to CNF

S->A(S)B|""
A -> S | S B |x|""
$B->S \mid y$
This is exercise is available in the "grammar tutoring system"
http://laraserver3.epfl.ch:9000

- Select exercise type "CNF Conversion" -> choose the problem "Exercise 1 of lecturecise 12"
- Make sure you create a new start symbol S1 and add the production S1->S | "" to your grammar before CNF conversion as the start symbol ' S ' is nullable and also appears on the right hand side

Exercise 2

Which of the following properties of a grammar are preserved by the "Epsilon Production Elimination" algorithm
a. Ambiguity No, counter-example ?

If a grammar is "ambiguous" does it remain ambiguous after removing epsilon productions?
b. LL(1) No, counter-example ?
c. No Left Recursion No, counter-example ?

We define left recursion as existence of productions of the form

- $\quad \mathrm{N}->\mathrm{N} \alpha$ (or)
$-\quad N \rightarrow N_{1} \alpha_{1}, N_{1} \rightarrow N_{2} \alpha_{2}, \cdots, N_{n} \rightarrow \mathrm{~N} \alpha_{n}$
d. Unambiguity? Yes, proof?

Exercise 2(a) - Solution

- Ambiguity : If a grammar is "ambiguous" does it remain ambiguous after removing epsilon productions?
- No, it need not. Eg. consider the following ambiguous grammar
- S->aA|a
- A->b|""
- The grammar has two parse trees for the string: a
- After removing epsilon productions we get
- S->aA|a
- A ->b
- There is exactly one parse tree for "a"

Exercise 2(b) - Solution

- $\operatorname{LL}(1)$: If a grammar is $\operatorname{LL}(1)$ does it remain $\operatorname{LL}(1)$ after removing epsilon productions?
- No, it need not. Eg. consider the following LL(1) grammar
- S->aSb|""
- After removing epsilon productions we get
- S' ->S|""
- S->aSb|ab
- Note: we have created a new start symbol as 'S' was nullable and appeared on the right hand side
- The grammar is not $\mathrm{LL}(1)$ as First(a S b) and First(a b) intersect

Exercise 2(c) - Solution

- No left recursion: If a grammar has no left recursion does it remain without left recursion after removing epsilon productions?
- No, it need not. Eg. consider the following non-left recursive grammar

$$
\begin{aligned}
& -\mathrm{S}->\mathrm{BS} \text { a|a } \\
& -\mathrm{B}->{ }^{\prime \prime \prime} \mid \mathrm{b}
\end{aligned}
$$

- After removing epsilon productions we get
- S->BSa|Sala
- B-> "" |b
- The production S-> S a is a left recursive production
- Note: this also means that we have to eliminate epsilons before removing left recursion using the approach described in lecturecise 10

Exercise 2(d) - Solution

Unambiguity: If a grammar is unambiguous does it remain unambiguous after removing epsilon productions?

- Yes. Proof: Let G' be obtained from G by eliminating epsilon productions Let's prove the contra-positive form: if there are two left most derivations for a word w in G^{\prime} then there will be two left most derivations for w in G
- Let D1 and D2 be two left most derivations for the word w in G'
- If all the productions used in D1 and D2 are also present in the G then D1 and D2 are also feasible in G, which will imply the claim.
- Therefore, say D1 or D2 use productions denoted using: $A_{i} \rightarrow \gamma_{j}$ that did not belong to G.
- For each $A_{i} \rightarrow \gamma_{j}$ (except when A_{i} is a start symbol), there exists $A_{i} \rightarrow \alpha_{j}$ belonging to G such that γ_{j} is obtained from α_{j} by removing nullable nonterminals from some positions (denoted by say \bar{X}_{j}).
- Hence, we can create new derivations D1' and D2' from D1 and D2 by replacing every use of the rule $A_{i} \rightarrow \gamma_{j}$ by $A \rightarrow \alpha_{j}$ and deriving empty strings (using productions of G) from non-terminals in positions \bar{X}_{j}

Exercise 2(d) - Solution

- If A_{i} was the start symbol of G^{\prime} and it does not belong to G then we remove the derivation $A_{i} \rightarrow S$ at the start of G^{\prime} and replace it with the start of symbol S of G
- Will the resulting derivations D1' and D2' be distinct ?
- Consider the point where D1 and D2 diverge. Let
- D1: $S \Rightarrow^{*} x B \alpha \Rightarrow x \beta_{1} \alpha \Rightarrow^{*} w$
- D2: $S \Rightarrow^{*} x B \alpha \Rightarrow x \beta_{2} \alpha \Rightarrow^{*} w$
- If neither $B \rightarrow \beta_{1}$ or $B \rightarrow \beta_{2}$ are of the form $A_{i} \rightarrow \gamma_{j}$ then D1' and D2' will also diverge at the same point as we preserve $B \rightarrow \beta_{1}$ and $B \rightarrow \beta_{2}$ in D1', D2' respec.
- Case (i), say
- D1: $S \Rightarrow{ }^{*} x A_{i} \alpha \Rightarrow x \gamma_{j} \alpha \Rightarrow^{*} w$
- D2: $S \Rightarrow^{*} x A_{i} \alpha \Rightarrow x \beta \alpha \Rightarrow^{*} w$, where $A_{i} \rightarrow \beta$ is a rule in G as well
- γ_{j} is replaced by α_{j} in D1' and some non-terminals in α_{j} derive epsilon. However, no non-terminal in β derives epsilon in D2 as D2 is a derivation of G^{\prime} that has no epsilon productions except for the start symbol. By construction, the start symbol of G^{\prime} will never appear on the right hand side if it is nullable.
- Hence, $A_{i} \rightarrow \beta$ will be preserved in D2' and no non-terminal in β derives epsilon in D2'. Hence, D1' will differ from D2' irrespective of whether $\alpha_{j}=\beta$ or not.

Exercise 2(d) - Solution

- Case (ii), say
- D1: $S \Rightarrow^{*} x A_{i} \alpha \Rightarrow x \gamma_{j} \alpha \Rightarrow^{*} w$
- D2: $S \Rightarrow^{*} x A_{i} \alpha \Rightarrow x \gamma_{k} \alpha \Rightarrow{ }^{*} w$
- $\quad \gamma_{j}$ is replaced by α_{j} in D1' and γ_{k} by α_{k} in D2'. Since $\gamma_{j} \neq \gamma_{k}$ either α_{j} and α_{k} are different or non-terminals at different positions in α_{j} and α_{k} are reduced to empty string in D1' and D2', respectively. Hence, D1' will differ from D2'

Exercise 3

Which of the following properties of a grammar are preserved by the "Unit Production Elimination" algorithm

- Ambiguity No, counter-example ?
- Left Recursion ${ }^{\text {No }}$
- What about these rules: B-> $A \mid a, A->B$?
- LL(1) Yes, proof?
- Unambiguity Yes, proof?

Exercise 3(a) - Solution

- Ambiguity : If a grammar is "ambiguous" does it remain ambiguous after removing unit productions ?
- No, it need not. Eg. consider the following ambiguous grammar
- S ->A|a
- A -> a
- There exists two parse tree for a: S->A -> a and S -> a
- After removing the unit production we get
- S->a
- There is exactly one parse tree for "a"

Exercise 3(b) - Solution

- Left recursion: If a grammar has left recursion will it have left recursion after removing unit productions?
- No, it need not. Eg. consider the following left recursive grammar
- B->A|a
- A ->B
- After removing the unit productions (using the graph based algorithm described in lecturecise 11) we get
- B->a
- A ->a

Exercise 3(c) - Solution

- $\operatorname{LL}(1)$: If a grammar is $\operatorname{LL}(1)$ does it remain $\operatorname{LL}(1)$ after removing unit productions?
- Yes. The following is a sketch of the proof (not a complete, rigorous proof).
- Let G^{\prime} be obtained from G by eliminating unit productions, we need show that all 3 properties of $\mathrm{LL}(1)$ holds
- Without loss of generality assume that we are removing only one unit production $\mathrm{A} \rightarrow \mathrm{B}$ and $\mathrm{B} \rightarrow \beta_{1}|\cdots| \beta_{n}$
- $\mathrm{A} \rightarrow \mathrm{B}$ will be replaced by $\mathrm{A} \rightarrow \beta_{1}|\cdots| \beta_{n}$

1. Every alternative of A in G^{\prime} will have disjoint first sets. If there is an alternative whose first set intersects with β_{i} for some i then in G it would have intersected with first(B) contradicting the fact that the input grammar is $\mathrm{LL}(1)$
2. A will have at most one nullable alternative in G^{\prime}. If in G, B was $\mathrm{A}^{\prime} \mathrm{s}$ nullable alternative then there will exist exactly one β_{i} that is nullable in G (and hence in G^{\prime}) as G is in $\mathrm{LL}(1)$. If not, no β_{i} will be nullable in G (and hence in G^{\prime}).

Exercise 3(c) - Solution [Cont.]

3. The follow set of every non-terminal except ' B ' will be the same in G and G '. Note that the follow set of non-terminals in β_{i} cannot change by adding the production $\mathrm{A} \rightarrow \beta_{1}|\cdots| \beta_{n}$ as in both G and G^{\prime}, follow $(A) \subseteq$ follow $\left(\beta_{i}\right)$ for each i , and G and G^{\prime} have same set of nullable non-terminals.

For the non-terminal B, follow(B) in G^{\prime} is a subset of follow(B) in G as the production $A->B$ is removed. However, any reduction in the follow set cannot violate $\mathrm{LL}(1)$ property. Hence, G^{\prime} is also in $\mathrm{LL}(1)$

Exercise 3(d) - Solution

Unambiguity: If a grammar is unambiguous does it remain unambiguous after removing unit productions ?

- Yes. Sketch of the proof: Let G^{\prime} be obtained from G by eliminating epsilon productions
- Let's prove the contra-positive form: if there are two left most derivations for a word w in G^{\prime} then there will be two left most derivations for w in G
- Without loss of generality assume that we are removing only one unit production $\mathrm{A}-\mathrm{B}$ and $\mathrm{B} \rightarrow \beta_{1}|\cdots| \beta_{n}$. $\mathrm{A} \rightarrow \mathrm{B}$ will be replaced by $\mathrm{A} \rightarrow \beta_{1}|\cdots| \beta_{n}$
- Let D 1 and D 2 be two left most derivations for the word w in G^{\prime}
- If all the productions used in D1 and D2 are also present in the G then D1 and D2 are also feasible in G , which will imply the claim.
- Therefore, say D1 or D2 use productions denoted using: $A \rightarrow \beta_{i}$ that did not belong to G.
- For each $A \rightarrow \beta_{i}$ there exists a derivation $A \rightarrow B \rightarrow \beta_{i}$ belonging to G we can create new derivations D1' and D2' from D1 and D2 by replacing every use of the rule $A \rightarrow \beta_{i}$ by the derivation $A \rightarrow B \rightarrow \beta_{i}$
- Are D1' and D2' distinct ?

Exercise 3(d) - Solution [Cont.]

- Consider the point where D1 and D2 diverge. Let
- D1: $S \Rightarrow^{*} x C \alpha \Rightarrow x \gamma_{1} \alpha \Rightarrow^{*} w$
- D2: $S \Rightarrow^{*} x C \alpha \Rightarrow x \gamma_{2} \alpha \Rightarrow^{*} w$
- If C is not A or neither of γ_{1} and γ_{2} are β_{i} for some i then D1' and D2' will also diverge at the same point as we do not change such productions
- Case (i), say
- D1: $S \Rightarrow^{*} x A \alpha \Rightarrow x \beta_{i} \alpha \Rightarrow^{*} w$
- D2: $S \Rightarrow^{*} x A \alpha \Rightarrow x \gamma_{2} \alpha \nRightarrow^{*} w$
- In this case D1' will be $S \Rightarrow^{*} x A \alpha \Rightarrow x B \alpha \Rightarrow x \beta_{i} \alpha \Rightarrow^{*} w$ and D2' will have $S \Rightarrow^{*} x A \alpha \Rightarrow x \gamma_{2} \alpha$. Moreover, γ_{2} is not B as $\mathrm{A}->\mathrm{B}$ does not belong to G^{\prime}. Hence, D1' will differ from D2'
- Case (ii), say
- D1: $S \Rightarrow{ }^{*} x A_{i} \alpha \Rightarrow x \beta_{i} \alpha \Rightarrow{ }^{*} w$
- D2: $S \Rightarrow{ }^{*} x A_{i} \alpha \Rightarrow x \beta_{j} \alpha \Rightarrow{ }^{*} w$
- In this case D1': $S \Rightarrow^{*} x A \alpha \Rightarrow x B \alpha \Rightarrow x \beta_{i} \alpha \Rightarrow^{*} w$ and $D 2^{\prime}: S \Rightarrow^{*} x A \alpha \Rightarrow x B \alpha \Rightarrow$ $x \beta_{j} \alpha \Rightarrow^{*} w$. Hence, D1' will differ from D2'

Exercise 4

Given a grammar G in CNF, how many steps does it require to derive a string of size n.

Exercise 4 -Solution

Intuition

Consider a derivation of a string of length n obtained as follows:

1. Derive a string of exactly n nonterminals from the start symbol, then
2. Expand each nonterminal out to a single terminal.

- To obtain ' n ' non-terminals from the start symbol, we need to apply productions of the form $S \rightarrow A B$ as that is the only way to generate nonterminals. How many times do we have to apply such productions ?
- Application of one such production will increase the number of nonterminals by 1 , since you replace one nonterminal with two nonterminals.
- Since we start with one nonterminal, we need to repeat this $n-1$ times.
- We need n more steps to convert nonterminals to terminals
- Therefore, total number of steps $=2 n-1$
- Let's try to prove this bound formally

Exercise 4 -Solution [Cont.]

- Denote the number of steps required to derive a string w from a nonterminal N as $\mathrm{NS}(\mathrm{N}, \mathrm{w})$
- If $|w|=1$, we need exactly 1 step. $N S(N, w)=1$ if $|w|=1$
- If $|\mathrm{w}|>1$, we first apply a production $\mathrm{N}->\mathrm{N} 1 \mathrm{~N} 2$ which will derive w .
- Say $N \Rightarrow^{*} N 1 N 2 \Rightarrow^{*} x N 2 \Rightarrow^{*} x y=w$,
- where $|x|=q$ (say) and $|y|=|w|-q$
- Hence, $N S(N, w)=N S(N 1, x)+N S(N 2, y)+1$
- We need a closed form for $\operatorname{NS}(N, w)$ that depends only on $|w|$. Say $N S(N, w)=f(|w|)$
- We have, $f(|w|)=\left\{\begin{array}{c}1 \text { if }|w|=1 \\ f(q)+f(|w|-q)+1 \text { if }|w|>1\end{array}\right.$
- Where $1<=q<|w|$
- $2|w|-1$ is the least solution for the above recurrence

Exercise 5

Assume a grammar in CNF has n non-terminals. Show that if the grammar can generate a word with a derivation having at least 2^{n} steps, then the recognized language should be infinite (see the pdf file uploaded in the lara wiki along with the slides)

Exercise 6

Show the CYK parsing table for the string "aabbab" for the grammar
S -> AB| BA | SS | AC | BD
A -> a
B -> b
C->SB
D -> SA
What should be done to construct a parse tree for the string

Exercise 6 -Solution

a abbab
012345

	0	1	2	3	4	5
0	A	-	-	S	D	S
1		A	S	C	S	C
2			B	-	-	-
3				B	S	C
4					A	S
5						B

- For generating parse trees, modify the parse table d as below
- Every entry (i, j), $\mathrm{i}<\mathrm{j}$, of the table is a triple ($\mathrm{N}, \mathrm{s}, \mathrm{p}$) which means that N accepts the sub-string from index i to j via a production of the form p: N -> N1 N2 and N1 accepts the substring from index i to (i+s-1) and N2 accepts the substring from index ($\mathrm{i}+\mathrm{s}$) to j

Exercise 6 -Solution [Cont.]

$S \rightarrow A B_{(p 1)}\left|B A_{(p 2)}\right| S S_{(p 3)}\left|A C_{(p 4)}\right| B D_{(p 5)}$
A $\rightarrow \mathrm{a}_{\text {(p6) }}$
$B->b(p 7)$
C \rightarrow SB ${ }_{(p 8)}$
D $->$ SA (p9)

	0	1	2	3	4	5
0	A	-	-	$(\mathrm{S}, 1, \mathrm{p} 4)$	$(\mathrm{D}, 4, \mathrm{p} 9)$	$(\mathrm{S}, 4, \mathrm{p} 3)$
1		A	$(\mathrm{S}, 1, \mathrm{p} 1)$	$(\mathrm{C}, 2, \mathrm{p} 8)$	$(\mathrm{S}, 2, \mathrm{p} 3)$	$(\mathrm{C}, 4, \mathrm{p} 8)$
2			B	-	-	-
3				B	$(\mathrm{~S}, 1, \mathrm{p} 2)$	$(\mathrm{C}, 2, \mathrm{p} 8)$
4					A	$(\mathrm{S}, 1, \mathrm{p} 1)$
5						B

See next slide for an algorithm for generating one parse tree given a table of the above form

Exercise 6 -solution [Cont.]

Algorithm for generating one parse tree starting from a nonterminal N for a sub-string (i,j)
ParseTree($\mathrm{N}, \mathrm{i}, \mathrm{j}$)

- If $\mathbf{i}=\mathrm{j}$, if N is in parseTable($\mathrm{i}, \mathrm{j})$ return Leaf($\mathrm{N}, \mathrm{w}(\mathrm{i}, \mathrm{j})$) else report parse error
- Otherwise, pick an entry ($\mathrm{N}, \mathrm{s}, \mathrm{p}$) from parseTable(i, j)
- If no such entry exist report that the sub-string cannot be parsed and return
- Let p: N -> N1 N2
- leftChild= ParseTree(N1, i, i+s-1)
- rightChild = ParseTree(N2, i+s, j)
- Return Node(N , leftChild, rightChild)

