Exercises on Chomsky Normal Form and CYK parsing

1. Convert the following grammar to CNF

S -> A (S) B |""
A -> S | S B |x|""
$B->S \mid y$

Exercise 2

Which of the following properties of a grammar are preserved by the "Epsilon Production Elimination" algorithm

- Ambiguity No, counter-example?
- If a grammar is "ambiguous" does it remain ambiguous after removing epsilon productions ?
- LL(1) No, counter-example ?
- No Left Recursion No, counter-example ?
- Unambiguity ? Yes, proof?

Exercise 2 [Part 2]

Which of the following properties of a grammar are preserved by the "Unit Production Elimination" algorithm

- Ambiguity No, counter-example ?
- Left Recursion May be
- What about these rules: B-> $A \mid a, A->B$?
- LL(1) Yes, proof?
- Unambiguity Yes, proof?

Exercise 3

Show the CYK parsing table for the string "aabbab" for the grammar
S -> AB| BA | SS | AC | BD
A -> a
B -> b
C->SB
D -> SA
What should be done to construct a parse for the string

Exercise 4

Should a grammar be strictly in CNF form for CYK to work ? If not, what are the properties that can be relaxed ?

A CYK for Any Grammar

grammar G, non-terminals A_{1}, \ldots, A_{K}, tokens $t_{1}, \ldots . \mathrm{t}_{\mathrm{L}}$
input word: $\mathrm{w}=\mathrm{w}_{(0)} \mathrm{W}_{(1)} \cdots \mathrm{W}_{(\mathrm{N}-1)}$
$\mathrm{w}_{\mathrm{p} . . \mathrm{q}}=\mathrm{w}_{(\mathrm{p})} \mathrm{w}_{(\mathrm{p}+1)} \ldots \mathrm{w}_{(\mathrm{q}-1)}$
Triple (A, p, q) means: $A=>^{*} w_{\text {p..q }}$, A can be: A_{i}, t_{j}, or ε
$P=\left\{\left(w_{(i)}, i, i+1\right) \mid 0 \leq i<N-1\right\}$
repeat \{
choose rule $\left(A::=B_{1} \ldots B_{m}\right) \in G$
if $\left(\left(A, p_{0}, p_{m}\right) \notin P \& \&\right.$

$$
\begin{aligned}
& \left(\left(m=0 \& \& p_{0}=p_{m}\right)\left|\mid\left(B_{1}, p_{0}, p_{1}\right), \ldots,\left(B_{m}, p_{m-1}, p_{m}\right) \in P\right)\right) \\
& P:=P \cup\left\{\left(A, p_{0}, p_{m}\right)\right\}
\end{aligned}
$$

$\}$ until no more insertions possible

What is the maximal number of steps? How long does it take to check step for a rule? \int
for grammar in given normal form

Observation

- How many ways are there to split a string of length Q into m segments?

$$
\binom{Q+m}{m}=\frac{(Q+m)!}{Q!m!}
$$

- Exponential in m , so algorithm is exponential.
- For binary rules, $m=2$, so algorithm is efficient.

Exercise 5

Assume a grammar in CNF has n non-terminals. Show that if the grammar can generate a word with a derivation having at least 2^{n} steps, then the recognized language should be infinite

Closure Properties of CFG

- Concatenation
- If L 1 and L 2 are context-free languages is $L=$ $\{x y \mid x \in L 1, y \in L 2\}$ also context-free ?
- Union
- Closure
- Complement ?
- Not always a CFG, but sometimes possible
- We can convert any regular expression to a CFG

Complement of a Grammar

- Compute the complement of the grammar
$-S \rightarrow A \mid B$
- A $->$ a $\left.A\right|^{\prime \prime \prime}$
$-B->\left.b B\right|^{\prime \prime \prime}$

