
Exercises on Chomsky Normal Form
and CYK parsing

1. Convert the following grammar to CNF

S -> A (S) B | “”

A -> S | S B | x | “”

B -> S B | y

Exercise 2

Which of the following properties of a grammar are
preserved by the “Epsilon Production Elimination”
algorithm

• Ambiguity

– If a grammar is “ambiguous” does it remain ambiguous
after removing epsilon productions ?

• LL(1)

• No Left Recursion

• Unambiguity ?

No, counter-example ?

No, counter-example ?

No, counter-example ?

Yes, proof ?

Exercise 2
[Part 2]

Which of the following properties of a grammar are
preserved by the “Unit Production Elimination”
algorithm

• Ambiguity

• Left Recursion

– What about these rules: B -> A | a , A -> B ?

• LL(1)

• Unambiguity

No, counter-example ?

Yes, proof ?

May be

Yes, proof ?

Exercise 3

Show the CYK parsing table for the string “aabbab”

for the grammar

S -> AB| BA | SS | AC | BD

A -> a

B -> b

C -> SB

D -> SA

What should be done to construct a parse for the string

Exercise 4

Should a grammar be strictly in CNF form for CYK to
work ? If not, what are the properties that can be
relaxed ?

A CYK for Any Grammar

grammar G, non-terminals A1,...,AK, tokens t1,....tL

input word: w = w(0)w(1) …w(N-1)

wp..q = w(p)w(p+1) …w(q-1)

Triple (A, p, q) means: A =>* wp..q , A can be: Ai, tj, or 
P = {(w(i),i,i+1)| 0  i < N-1}
repeat {

choose rule (A::=B1...Bm)G
if ((A,p0,pm)P &&

((m=0 && p0=pm) || (B1,p0,p1), ...,(Bm,pm-1,pm)  P))
P := P U {(A,p0,pm)}

} until no more insertions possible

What is the maximal number of steps?
How long does it take to check step for a rule?

for grammar in
given normal form

Observation

• How many ways are there to split a string of
length Q into m segments?

• Exponential in m, so algorithm is exponential.

• For binary rules, m=2, so algorithm is efficient.

Exercise 5

Assume a grammar in CNF has n non-terminals. Show
that if the grammar can generate a word with a
derivation having at least 2𝑛 steps, then the recognized
language should be infinite

Closure Properties of CFG

• Concatenation

– If L1 and L2 are context-free languages is 𝐿 =
𝑥𝑦 𝑥 ∈ 𝐿1, 𝑦 ∈ 𝐿2} also context-free ?

• Union

• Closure

• Complement ?

– Not always a CFG, but sometimes possible

• We can convert any regular expression to a CFG

Complement of a Grammar

• Compute the complement of the grammar

– S -> A | B

– A -> a A | “”

– B -> b B | “”

