Exercises on Chomsky Normal Form
and CYK parsing

1. Convert the following grammar to CNF
S->A(S)B |

A->S|SB|x]|“

B->SB|y

Exercise 2

Which of the following properties of a grammar are

preserved by the “Epsilon Production Elimination”
algorithm
No, counter-example ?

e Ambiguity

— If a grammar is “ambiguous” does it remain ambiguous
after removing epsilon productions ?
- ?
o LL(1) No, counter-example “

- - ?
e No Left Recursion No; counter-example °

e Unambiguity ? "eS Proof?

Exercise 2
| Part 2]

Which of the following properties of a grammar are

preserved by the “Unit Production Elimination”
algorithm

. . _ 2
e Ambiguity No, counter-example

e Left Recursion May be

— What about theserules:B->A |a, A->B?
° |_|_(1) Yes, proof ?

e Unambiguity Yes, proof?

Exercise 3

Show the CYK parsing table for the string “aabbab”

for the grammar

S->AB| BA|SS| AC| BD

A->a

B->b

C->SB

D -> SA

What should be done to construct a parse for the string

Exercise 4

Should a grammar be strictly in CNF form for CYK to
work ? If not, what are the properties that can be
relaxed ?

A CYK for Any Grammar

grammar G, non-terminals A,,...,A, tokens t,,....t,

input word: W = W q,Wq) ...W. 1

Wo.a = Wip)W(p+1) - W(q-1)

Triple (A, p, q) means: A=>"w
P ={(w),i,i+1)| 0<i< N-1}
repeat {

choose rule (A::=B,...B_)eG
if ((A,po,P) €P &&

((m=0 && py,=p,,) || (B1,Pg:P1)s --+»(B,yP-1,Pm) € P))

P:=PU{(ApypP,)}
} until no more insertions possible

o.q » Acan be: A, t,ore

What is the maximal number of steps? for grammar in
How long does it take to check step for a rule? | 8iven normal form

Observation

e How many ways are there to split a string of
length Q into m segments?

(Q:ﬂ""’) . (Qim)l

Qiml
e Exponential in m, so algorithm is exponential.

e For binary rules, m=2, so algorithm is efficient.

Exercise 5

Assume a grammar in CNF has n non-terminals. Show
that if the grammar can generate a word with a

derivation having at least 2" steps, then the recognized
language should be infinite

Closure Properties of CFG

e Concatenation

— If L1 and L2 are context-free languages is L =
{xy |x € L1,y € L2} also context-free ?

e Union
e Closure
e Complement ?

— Not always a CFG, but sometimes possible
e We can convert any regular expression to a CFG

Complement of a Grammar

e Compute the complement of the grammar
-S>A|B
—A->aA|“
~B->bB|“

