Exercises on Grammars

1. Consider the following grammar:
S->(L) | a

L->L,S|S

e |s this grammar ambiguous ?

e |s this grammar LL(1) ?

e Compute the First and Follow sets for the new
grammar.

e Construct the parsing table for the LL(1) parser



Finding an LL(1) grammar

e No procedural way ! Practice ...

e But there are some recommended practices that
generally help in finding one.

e Eg. try to eliminate left recursion.

— There is a procedure for this but you don’t have to
faithfully follow the entire approach.

— Just think of what left recursion brings and what can be
done to eliminate them



Removing Left Recursion

S->(L) | a
L->L,S|S
e How does a derivation starting from ‘L’ look ?
e L=>L,S
=>1L,S,S
=>*L,S,..,S
=>S,...,S
e L->L,S|S isequivalenttoL->S,L|S
S->(L)|a
L->S,L|S



Removing Left Recursion

Ingeneral,L-> La | B; | ... | By,
L-> B2 | bnZ B | | Bn
> all|e

This will remove immediate left-recursion but only
when there are no epsilon productions in the
grammar

Otherwise, we need to remove epsilon productions
which will be discussed along with CNF conversion

Removing indirect recursion
S->La
L->Sa | b



Removing Left Recursion

Order non-terminals Eg. (1) S, (2) L

Enforce that if A -> B then A should precede B in the
ordering

S->LaandL->b satisfy the constraint but L->S a
doesn’t

Inline the productionof SinL->S a

We get,L->Laa | b, Remove left recursion.
— Result:L->bZ | b Z->aalle€

If inlining does not result in left recursive production
or doesn’t satisfy the constraints, inline again.



Example 1 [Cont.]

S->(L)|a
L->L,S|S

e After eliminating left recursion
S->(L)|a

L->S,L|S

e |s this LL(1) now ?



Example 1 [Cont.]

S->(L)|a
L->L,S|S

e After eliminating left recursion
S->(L)|a

L->S,L|S

e |s this LL(1) now ?



Left factorization

S->(L)|a
L->S,L]|S

e |dentify a common prefix and push the suffixes to a
new nonterminal.

S->(L)|a

L->S7Z

Z->,L| €

e |sthis LL(1) now ? Yes



Exercise 1 - First and Follow sets
(with EOF)

Let’s compute first and follow sets after adding EOF to the end
of the start symbol productions

S->(L)EOF | a EOF

L->SZ

Z->,L|e€

e First(S) 2 First( (L )) U First(a) = { (, a}
e First(L) 2 First(SZ) = First(S)

e First(Z) 2 First(, L) = {,}

e Follow(S) 2 Follow(L) U Follow(Z)

e Follow(L) 2{)}U Follow(Z)

e Follow(Z) 2 Follow(L)



First and Follow sets [Cont.]

S->(L)EOF | aEOF
L->SZ
Z->,L|€

e Solution to the above constraints:

- First(S) = First(L) = {(, a}

- First(Z) = {,}

- Follow(S) = Follow(L) = Follow(Z) = {)}
e Moreover, Z is Nullable



LL(1) parsing table

(1) S->(L)
(2) S-> a
3)L->SZ
(4)Z->,L
(5)Z->¢€

Error Error Error
L 3 3 Error Error Error
Error Error 5 4 Error



Exercise 2

Consider a grammar for expressions where the
multiplication sign is optional.

ex::=ex+ex | ex*ex|exex|ID

e Find an LL(1) grammar recognizing the same
language

e Create the LL(1) parsing table.



Exercise 2 — Solution

First let’s make the grammar unambiguous by
associating precedence with operators

In the process we also made sure that the grammar
does not have left recursion

ex::=S+ex| S
S:=ID*S|IDS | ID
Left factorization:

ex::=S/
Z:=+ex| €
S::=1ID Z2

Z2::=*S|S | €



Exercise 2 — LL(1) parsing table

ex ::=SZEOF
Z:=+ex| e
S::=1ID Z2

Z2::=*S|S | €

First let’s compute first and follow sets after adding
EOF to the end of the start symbol productions

— First(ex) = First(S)={ ID }

— First(Z)={+} First(z2)={*,ID}

— Follow(ex) = Follow(Z) = { EOF }

— Follow(S) = Follow(Z2) = { EOF, +}

Z and Z2 are nullable



N o Uk WD RE

ex::=SZ
/ =+ exX
L= €
S:=1IDZ2
Z2 ::=*S
L2 =S
[2 .= €

LL(1) parsing table

Error Error Error
Z Error 2 Error 3
S 4 Error Error Error
Z2 6 7 5 7



Exercise 3

Balanced Parentheses over {(, [ }
S:=(S)|[S]|SS]| e

e Find an LL(1) grammar recognizing the language



Exercise 3 - Solution

S:=(S)|[S]|SS|€
‘S” produces epsilon. Hence, we need to first

eliminate epsilon (discussed in lecturecise 11) and
then remove left recursion from S::=SS

Instead, let’s apply the same logic as removing left
recursion but without performing all the steps.

The role of the production S ::=S S is to produce a
sequence of S that begin with either (S)or[S]. i.e,

—(S)SS...S



Exercise 3 - Solution

e Each of the successive S 'es can rewrite to either (S )
or [S]. Thatis, in essence S ::=S S produces
sequences given by the regular expression ((S) | [ S
J)*

— Eg(S)(S)[S](S)... isone such sequence

e The same effect can be achieved by the right
recursive rules
—S:=(S)S|[S]S | €

e The above grammar is LL(1)



Exercise 4

Prove that every LL(1) grammar is unambiguous.



Solution to Exercise 4

Intuition:

Every production of a non-terminal belonging to an LL(1)
grammar generates a set of strings that is completely disjoint
from the other alternatives because of the following two

reasons:

(a) For every nonterminal, the first sets of every alternative are
disjoint which implies that they produce disjoint non-empty
strings

(b) There is at most one production for a non-terminal that can
produce an empty string

Formal proof is presented in the next slide



Solution to Exercise 4 [Cont.]

Claim : Every string w derivable from every non-terminal N has a
unique left most derivation.

Proof by contradiction: Let D;: N =" wand D,: N =" w be two
derivations for w

D; and D, should diverge at some point. That is there exists a step
at which a non-terminal expanded to different alternatives in the
derivations.

Let x we be prefix of w that is derived just before the point where
D, and D, diverge. That is

- Di:N =" xAa = xfa =>"w

— Dy: N =" xAa = xya =" w,

where A is a non-terminal, and a, 5,y are sequence of terminals
and non-terminals, and f # y

If x = wthen fa =" € and ya =" €. Hence, there are two nullable
alternatives for A which is a contradiction



2.

3.

Solution to Exercise 4 [Cont.]

Therefore, say |x| < |w/|. This implies that the next input character is
Wix+1 = @ (say)

Informally this means that both A — y and A — [ are applicable on
seeing the input character a which contradicts the LL(1) property.

Formally, given a € first(fa) and a € first(ya)

If both f and y reduce to empty string (€) in the derivations D; and D,
then there are two nullable productions for A, which is a contradiction

If one of § and y reduce to empty string and other doesn’t

Let B =" € and y derive a non-empty string

Since a € first(ya) and y derives non-empty string, a € first(y), which also
implies that a € first(A4)

Since a € first(fa) and f derives empty string, a € first(a)

Since N =" xAa, first(a) € follow(A) . Hence, a € follow(A)

Thus, a € follow(A) N first(A) and A is nullable, which contradicts LL(1) property

Finally, if both 8 and y derive non-empty strings then a € first(f8) N
first(y) again contradicting LL(1) property



Corollary of the proof

e The preceding proof not just proves that every string has a
unique left most derivation in a LL(1) grammar but also
proves the following:

e |f two strings u and v share a common prefix X’ , then the
derivations of u and v cannot diverge before generating the

prefix X.

e That is the derivations of u and v should be of the form:
-S=>" xa=>" u
-S> xa=>"v



Exercise 5

Say that a grammar has a cycle if there is a reachable,
productive non-terminal A such that A =%A, i.e. itis
possible to derive the nonterminal A from A by a
nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not LL(1).



Solution to Exercise 5

We proved before that LL(1) grammars are not ambiguous
Consider a left most derivation D that contains A

D: S=" xAf=>"w

— Where, x is a (possibly empty) sequence of terminals and

— [ is a sentential form

— Such a derivation must exist as A is reachable (from the start symbol)
and also productive

Using A =1 A, we can derive another derivation for w

D': S =" xAB =1 xAB =>* w

There exists two left most derivations and hence two parse
trees for w

The grammar is ambiguous and hence cannot be LL(1)



Exercise 6

Show that the regular languages can be recognized
with LL(1) parsers. Describe a process that, given a
regular expression, constructs an LL(1) parser for it.



Solution for Exercise 6

e Let the DFA for the regular language be A :
(Z, Q'qO ,6,F)
e Define agrammar G: (N, T, P, S) where,

e N={S5[1=<i<|Q|}

e T =X

e S= 5,

e 5(q,a) =q;=>S;>aS;EP

e g;EF=>S5 —-€€P
L(A) = L(G)



Exercise 7/

Show that the language { a"b™ | n > m} cannot have
an LL(1) grammar ?

Note that the following grammar recognizes the
language but is not LL(1)

S->aS|P
P->aPb|a

This question interesting but is quite difficult. A proof
for this is provided in a separate pdf file in the lara wiki.

This is meant only as a supplementary material to
provide more insights into LL(1) grammars.

It is not essential to fully understand the proof of this
atie<tion



