
Exercises on Grammars

1. Consider the following grammar:

S -> ( L ) | a

L -> L , S | S

• Is this grammar ambiguous ?

• Is this grammar LL(1) ?

• Compute the First and Follow sets for the new 
grammar.

• Construct the parsing table for the LL(1) parser 



Finding an LL(1) grammar

• No procedural way ! Practice …

• But there are some recommended practices that 
generally help in finding one.

• Eg. try to eliminate left recursion. 

– There is a procedure for this but you don’t have to 
faithfully follow the entire approach. 

– Just think of what left recursion brings and what can be 
done to eliminate them



Removing Left Recursion

S -> ( L ) | a

L -> L , S | S

• How does a derivation starting from ‘L’ look ?

• L => L , S 

=> L , S , S   

=>* L , S , … , S 

=> S , … , S

• L -> L , S | S  is equivalent to L -> S , L | S 

S -> ( L ) | a

L -> S , L | S



Removing Left Recursion

• In general, L ->  L 𝛼 | 𝛽1 | … | 𝛽𝑛
• L ->  𝛽1 Z | … | 𝛽𝑛 Z | 𝛽1 | … | 𝛽𝑛
• Z -> 𝛼 Z | 𝜖

• This will remove immediate left-recursion but only 
when there  are no epsilon productions in the 
grammar

• Otherwise, we need to remove epsilon productions 
which will be discussed along with CNF conversion

• Removing indirect recursion

S -> L a

L -> S a  | b



Removing Left Recursion

• Order non-terminals Eg. (1) S , (2) L

• Enforce that if A -> B then A should precede B in the 
ordering

• S -> L a and L -> b satisfy the constraint but L -> S a
doesn’t

• Inline the production of S in L -> S a

• We get, L -> L a a | b , Remove left recursion.

– Result: L -> b Z | b  Z -> a a Z | 𝜖

• If inlining does not result in left recursive production 
or doesn’t satisfy the constraints, inline again.



Example 1 [Cont.]

S -> ( L ) | a

L -> L , S | S

• After eliminating left recursion

S -> ( L ) | a

L -> S , L | S

• Is this LL(1) now ?



Example 1 [Cont.]

S -> ( L ) | a

L -> L , S | S

• After eliminating left recursion

S -> ( L ) | a

L -> S , L | S

• Is this LL(1) now ?



Left factorization

S -> ( L ) | a

L -> S , L | S

• Identify a common prefix and push the suffixes to a 
new nonterminal.

S -> ( L ) | a

L -> S Z

Z -> , L | 𝜖

• Is this LL(1) now ? Yes



Exercise 1 - First and Follow sets 
(with EOF)

Let’s compute first and follow sets after adding EOF to the end 
of the start symbol productions

S -> ( L ) EOF | a  EOF 

L -> S Z

Z -> , L | 𝜖

• 𝐹𝑖𝑟𝑠𝑡 𝑆 ⊇ 𝐹𝑖𝑟𝑠𝑡 𝐿 ∪ 𝐹𝑖𝑟𝑠𝑡 𝑎 = { ( , 𝑎}

• 𝐹𝑖𝑟𝑠𝑡 𝐿 ⊇ 𝐹𝑖𝑟𝑠𝑡 𝑆 𝑍 = 𝐹𝑖𝑟𝑠𝑡(𝑆)

• 𝐹𝑖𝑟𝑠𝑡 𝑍 ⊇ 𝐹𝑖𝑟𝑠𝑡 , 𝐿 = { , }

• 𝐹𝑜𝑙𝑙𝑜𝑤 𝑆 ⊇ 𝐹𝑜𝑙𝑙𝑜𝑤 𝐿 ∪ 𝐹𝑜𝑙𝑙𝑜𝑤 𝑍

• 𝐹𝑜𝑙𝑙𝑜𝑤 𝐿 ⊇ } ∪ 𝐹𝑜𝑙𝑙𝑜𝑤(𝑍)

• 𝐹𝑜𝑙𝑙𝑜𝑤 𝑍 ⊇ 𝐹𝑜𝑙𝑙𝑜𝑤 𝐿



First and Follow sets [Cont.]

S -> ( L ) EOF | a EOF

L -> S Z

Z -> , L | 𝜖

• Solution to the above constraints: 
– 𝐹𝑖𝑟𝑠𝑡 𝑆 = 𝐹𝑖𝑟𝑠𝑡 𝐿 = { ( , 𝑎}

– 𝐹𝑖𝑟𝑠𝑡 𝑍 = { , }

– 𝐹𝑜𝑙𝑙𝑜𝑤 𝑆 = 𝐹𝑜𝑙𝑙𝑜𝑤 𝐿 = 𝐹𝑜𝑙𝑙𝑜𝑤 𝑍 = }

• Moreover, Z is Nullable



LL(1) parsing table

a ( ) , EOF

S 2 1 Error Error Error

L 3 3 Error Error Error

Z Error Error 5 4 Error

(1) S -> ( L )

(2) S ->  a 

(3) L -> S Z

(4) Z -> , L 

(5) Z -> 𝜖



Exercise 2

Consider a grammar for expressions where the 
multiplication sign is optional.

ex ::= ex + ex | ex * ex | ex ex |ID

• Find an LL(1) grammar recognizing the same 
language

• Create the LL(1) parsing table.



Exercise 2 – Solution

• First let’s make the grammar unambiguous by 
associating precedence with operators

• In the process we also made sure that the grammar 
does not have left recursion

• ex ::= S + ex |  S

• S ::= ID * S | ID S  | ID 

• Left factorization:

• ex ::= S Z

• Z ::= + ex | 𝜖

• S ::= ID Z2 

• Z2 ::= * S | S  | 𝜖



Exercise 2 – LL(1) parsing table

• ex ::= S Z EOF

• Z ::= + ex | 𝜖

• S ::= ID Z2 

• Z2 ::= * S | S  | 𝜖

• First let’s compute first and follow sets after adding 
EOF to the end of the start symbol productions

– First(ex) = First(S) = {  ID }

– First(Z) = { + } First(Z2) = { * , ID }

– Follow(ex) = Follow(Z) = { EOF } 

– Follow(S) = Follow(Z2) = { EOF, + } 

• Z and Z2 are nullable



LL(1) parsing table

1. ex ::= S Z 

2. Z ::= + ex 

3. Z ::= 𝜖

4. S ::= ID Z2 

5. Z2 ::= * S 

6. Z2 ::= S  

7. Z2 ::=  𝜖

ID + * EOF

ex 1 Error Error Error

Z Error 2 Error 3

S 4 Error Error Error

Z2 6 7 5 7



Exercise 3

Balanced Parentheses over { ( , [ } 

S ::= ( S )| [ S ] | S S | 𝜖

• Find an LL(1) grammar recognizing the language



Exercise 3 - Solution

• S ::= ( S )| [ S ] | S S | 𝜖

• ‘S’ produces epsilon. Hence, we need to first 
eliminate epsilon (discussed in lecturecise 11) and 
then remove left recursion from   S ::= S S

• Instead, let’s apply the same logic as removing left 
recursion but without performing all the steps.

• The role of the production S ::= S S is to produce a 
sequence of S  that begin with either ( S ) or [ S ]. i.e,

– ( S ) S S …. S

– [ S ] S S……. S



Exercise 3 - Solution

• Each of the successive S ’es can rewrite to either ( S ) 
or [ S ]. That is, in essence  S ::= S S produces 
sequences given by the regular expression ( ( S ) | [ S 
] ) *

– E.g ( S ) ( S ) [ S ] ( S ) …  is one such sequence

• The same effect can be achieved by the right 
recursive rules  

– S ::= ( S ) S | [ S ] S  | 𝜖

• The above grammar is LL(1)



Exercise 4

Prove that every LL(1) grammar is unambiguous. 



Solution to Exercise 4

Intuition:

Every production of a non-terminal belonging to an LL(1) 
grammar generates a set of strings that is completely disjoint 
from the other alternatives because of the following two 
reasons:

(a) For every nonterminal, the first sets of every alternative are 
disjoint which implies that they produce disjoint non-empty 
strings

(b) There is at most one production for a non-terminal that can 
produce an empty string

Formal proof is presented in the next slide



Solution to Exercise 4 [Cont.]
Claim : Every string w derivable from every non-terminal N has a 
unique left most derivation.

• Proof by contradiction: Let D1: 𝑁 ⇒∗ 𝑤 and D2: 𝑁 ⇒∗ 𝑤 be two 
derivations for w

• 𝐷1 and 𝐷2 should diverge at some point. That is there exists a step 
at which a non-terminal expanded to different alternatives in the 
derivations.

• Let 𝑥 we be prefix of 𝑤 that is derived just before the point where 
𝐷1 and 𝐷2 diverge. That is 

– 𝐷1: 𝑁 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝛽𝛼 ⇒∗ 𝑤

– 𝐷2: 𝑁 ⇒∗ 𝑥𝐴𝛼 ⇒ 𝑥𝛾𝛼 ⇒∗ 𝑤 ,

• where A is a non-terminal, and 𝛼, 𝛽, 𝛾 are sequence of terminals 
and non-terminals, and 𝛽 ≠ 𝛾

• If 𝑥 = 𝑤 then 𝛽𝛼 ⇒∗ 𝜖 and 𝛾𝛼 ⇒∗ 𝜖. Hence, there are two nullable 
alternatives for A which is a contradiction



Solution to Exercise 4 [Cont.]
• Therefore, say |𝑥| < 𝑤 . This implies that the next input character is 

𝑤|𝑥|+1 = 𝑎 (𝑠𝑎𝑦)

• Informally this means that both 𝐴 → 𝛾 and 𝐴 → 𝛽 are applicable on 
seeing the input character 𝑎 which contradicts the LL(1) property. 

• Formally, given 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡 𝛽𝛼 and 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡(𝛾𝛼)

1. If both 𝛽 and 𝛾 reduce to empty string (𝜖) in the derivations 𝐷1 and 𝐷2
then there are two nullable productions for A, which is a contradiction

2. If one of 𝛽 and 𝛾 reduce to empty string and other doesn’t
– Let 𝛽 ⇒∗ 𝜖 and 𝛾 derive a non-empty string

– Since  𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡 𝛾𝛼 and 𝛾 derives non-empty string, 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡 𝛾 , which also 
implies that 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡(𝐴)

– Since  𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡(𝛽𝛼) and 𝛽 derives empty string, 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡(𝛼)

– Since 𝑁 ⇒∗ 𝑥𝐴𝛼, 𝑓𝑖𝑟𝑠𝑡 𝛼 ⊆ 𝑓𝑜𝑙𝑙𝑜𝑤(𝐴) . Hence,  𝑎 ∈ 𝑓𝑜𝑙𝑙𝑜𝑤(𝐴)

– Thus,  𝑎 ∈ 𝑓𝑜𝑙𝑙𝑜𝑤 𝐴 ∩ 𝑓𝑖𝑟𝑠𝑡 𝐴 and 𝐴 is nullable, which contradicts LL(1) property

3. Finally, if both 𝛽 and 𝛾 derive non-empty strings then 𝑎 ∈ 𝑓𝑖𝑟𝑠𝑡 𝛽 ∩
𝑓𝑖𝑟𝑠𝑡 𝛾 again contradicting LL(1) property



Corollary of the proof

• The preceding proof not just proves that every string has a 
unique left most derivation in a LL(1) grammar but also 
proves the following:

• If two strings u and v share a common prefix ‘x’ , then the 
derivations of u and v cannot diverge before generating the 
prefix ‘x’.

• That is the derivations of  u and v should be of the form:

– 𝑆 ⇒∗ 𝑥 𝛼 ⇒∗ 𝑢

– 𝑆 ⇒∗ 𝑥 𝛼 ⇒∗ 𝑣



Exercise 5

Say that a grammar has a cycle if there is a reachable,
productive non-terminal A such that A ⇒+A, i.e. it is 
possible to derive the nonterminal A from A by a 
nonempty sequence of production rules.

Show that if a grammar has a cycle, then it is not LL(1).



Solution to Exercise 5

• We proved before that LL(1) grammars are not ambiguous

• Consider a left most derivation D that contains A 

• D:  𝑆 ⇒∗ 𝑥𝐴𝛽 ⇒∗ 𝑤
– Where, x is a (possibly empty) sequence of terminals  and

– 𝛽 is a sentential form

– Such a derivation must exist as A is reachable (from the start symbol) 
and also productive

• Using A ⇒+A, we can derive another derivation for 𝑤

• D′: 𝑆 ⇒∗ 𝑥𝐴𝛽 ⇒+ 𝑥𝐴𝛽 ⇒∗ 𝑤

• There exists two left most derivations and hence two parse 
trees for w

• The grammar is ambiguous and hence cannot be LL(1)



Exercise 6

Show that the regular languages can be recognized 
with LL(1) parsers. Describe a process that, given a 
regular expression, constructs an LL(1) parser for it.



Solution for Exercise 6

• Let the DFA for the regular language be  A ∶
(Σ, 𝑄, 𝑞0 , 𝛿, 𝐹)

• Define a grammar G: (N, T, P, S) where,

• N =  𝑆𝑖 1 ≤ 𝑖 ≤ 𝑄 }

• T = Σ

• S =  𝑆0

• 𝛿 𝑞𝑖 , 𝑎 = 𝑞𝑗 ⇒ 𝑆𝑖 → 𝑎 𝑆𝑗 ∈ 𝑃

• 𝑞𝑖 ∈ 𝐹 ⇒ 𝑆𝑖 → 𝜖 ∈ 𝑃

L(A) =  L(G)



Exercise 7

Show that the language { 𝑎𝑛𝑏𝑚 | 𝑛 > 𝑚} cannot have 
an LL(1) grammar ?

Note that the following grammar recognizes the 
language but is not LL(1)

S -> a S | P  

P -> a P b | a 

This question interesting but is quite difficult. A proof 
for this is provided in a separate pdf file in the lara wiki.

This is meant only as a supplementary material to 
provide more insights into LL(1) grammars. 

It is not essential to fully understand the proof of this 
question.


