
Exercise: Balanced Parentheses

Show that the following balanced parentheses
grammar is ambiguous (by finding two parse
trees for some input sequence) and find
unambiguous grammar for the same language.

 B ::=  | (B) | B B

Remark

• The same parse tree can be derived using two
different derivations, e.g.

 B -> (B) -> (BB) -> ((B)B) -> ((B)) -> (())

 B -> (B) -> (BB) -> ((B)B) -> (()B) -> (())

this correspond to different orders in which
nodes in the tree are expanded

• Ambiguity refers to the fact that there are
actually multiple parse trees, not just multiple
derivations.

Towards Solution

• (Note that we must preserve precisely the set
of strings that can be derived)

• This grammar:

 B ::=  | A
 A ::= () | A A | (A)

solves the problem with multiple  symbols
generating different trees, but it is still
ambiguous: string () () () has two different
parse trees

Solution
• Proposed solution:

 B ::=  | B (B)

• this is very smart! How to come up with it?

• Clearly, rule B::= B B generates any sequence of B's. We can also encode it
like this:
 B ::= C*
 C ::= (B)

• Now we express sequence using recursive rule that does not create
ambiguity:

 B ::=  | C B
 C ::= (B)

• but now, look, we "inline" C back into the rules for so we get exactly the
rule

 B ::=  | B (B)

This grammar is not ambiguous and is the solution. We did not prove this fact
(we only tried to find ambiguous trees but did not find any).

Exercise 2: Dangling Else

The dangling-else problem happens when the
conditional statements are parsed using the
following grammar.
 S ::= S ; S
 S ::= id := E
 S ::= if E then S
 S ::= if E then S else S
Find an unambiguous grammar that accepts the
same conditional statements and matches the
else statement with the nearest unmatched if.

Discussion of Dangling Else

if (x > 0) then

 if (y > 0) then
 z = x + y
else x = - x

• This is a real problem languages like C, Java

– resolved by saying else binds to innermost if

• Can we design grammar that allows all
programs as before, but only allows parse
trees where else binds to innermost if?

Sources of Ambiguity in this Example

• Ambiguity arises in this grammar here due to:

– dangling else

– binary rule for sequence (;) as for parentheses

– priority between if-then-else and semicolon (;)

if (x > 0)

 if (y > 0)
 z = x + y;
 u = z + 1 // last assignment is not inside if

Wrong parse tree -> wrong generated code

How we Solved It
We identified a wrong tree and tried to refine the grammar to prevent it, by
making a copy of the rules. Also, we changed some rules to disallow
sequences inside if-then-else and make sequence rule non-ambiguous. The
end result is something like this:

 S::=  |A S // a way to write S::=A*
 A ::= id := E
 A ::= if E then A
 A ::= if E then A' else A

 A' ::= id := E
 A' ::= if E then A' else A'

At some point we had a useless rule, so we deleted it.

We also looked at what a practical grammar would have to allow sequences
inside if-then-else. It would add a case for blocks, like this:

 A ::= { S }
 A' ::= { S }

We could factor out some common definitions (e.g. define A in terms of A'),
but that is not important for this problem.

Exercise: Unary Minus

1) Show that the grammar

 A ::= − A
 A ::= A − id
 A ::= id

is ambiguous by finding a string that has two different
syntax trees.

2) Make two different unambiguous grammars for the
same language:
 a) One where prefix minus binds stronger than infix minus.
 b) One where infix minus binds stronger than prefix minus.
3) Show the syntax trees using the new grammars for the
string you used to prove the original grammar ambiguous.

Exercise:
Left Recursive and Right Recursive

We call a production rule “left recursive” if it is of the
form

 A ::= A p

for some sequence of symbols p. Similarly, a "right-
recursive" rule is of a form

 A ::= q A

Is every context free grammar that contains both left
and right recursive rule for a some nonterminal A
ambiguous?

Answer: yes, if A is reachable from the top symbol and
productive can produce a sequence of tokens

Making Grammars Unambiguous
- some recipes -

Ensure that there is always only one parse tree

Construct the correct abstract syntax tree

Goal: Build Expression Trees

abstract class Expr

case class Variable(id : Identifier) extends Expr

case class Minus(e1 : Expr, e2 : Expr) extends Expr

case class Exp(e1 : Expr, e2 : Expr) extends Expr

 different order gives different results:

Minus(e1, Minus(e2,e3)) e1 - (e2 - e3)

Minus(Minus(e1,e2),e3) (e1 - e2) - e3

Ambiguous Expression Grammar

expr ::= intLiteral | ident

 | expr + expr | expr / expr

foo + 42 / bar + arg

Show that the input above has two parse trees!

Each node in parse tree is given by
one grammar alternative.

1) Layer the grammar by priorities

expr ::= term (- term)*

term ::= factor (^ factor)*

factor ::= id | (expr)

lower priority binds weaker,

so it goes outside

expr ::= ident | expr - expr | expr ^ expr | (expr)

2) Building trees: left-associative "-"

LEFT-associative operator

x – y – z  (x – y) – z

 Minus(Minus(Var(“x”),Var(“y”)), Var(“z”))

def expr : Expr = {

 var e =

 while (lexer.token == MinusToken) {

 lexer.next

 }

 e

}

e = Minus(e, term)

term

3) Building trees: right-associative "^"

RIGHT-associative operator – using recursion
 (or also loop and then reverse a list)
x ^ y ^ z  x ^ (y ^ z)
 Exp(Var(“x”), Exp(Var(“y”), Var(“z”)))

def expr : Expr = {

 val e = factor

 if (lexer.token == ExpToken) {

 lexer.next

 Exp(e, expr)

 } else e

}

Manual Construction of Parsers

• Typically one applies previous transformations
to get a nice grammar

• Then we write recursive descent parser as set
of mutually recursive procedures that check if
input is well formed

• Then enhance such procedures to construct
trees, paying attention to the associativity and
priority of operators

Grammar Rules as Logic Programs
Consider grammar G: S ::= a | b S

L(_) - language of non-terminal

L(G) = L(S) where S is the start non-terminal

L(S) = L(G) = { bna | n >= 0}

From meaning of grammars:

 w  L(S)  w=a \/ w  L(b S)

To check left hand side, we need to check right
hand side. Which of the two sides?

– restrict grammar, use current symbol to decide - LL(1)

– use dynamic programming (CYK) for any grammar

Recursive Descent - LL(1)

• See wiki for

– computing first, nullable, follow for non-terminals
of the grammar

– construction of parse table using this information

– LL(1) as an interpreter for the parse table

Grammar vs Recursive Descent Parser

expr ::= term termList
termList ::= + term termList
 | - term termList
 | 
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | 
factor ::= name | (expr)
name ::= ident

def expr = { term; termList }
def termList =
 if (token==PLUS) {
 skip(PLUS); term; termList
 } else if (token==MINUS)
 skip(MINUS); term; termList
 }

def term = { factor; factorList }

...

def factor =
 if (token==IDENT) name
 else if (token==OPAR) {
 skip(OPAR); expr; skip(CPAR)
 } else error("expected ident or)")

Rough General Idea

A ::= B1 ... Bp
 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token  T1) {
 B1 ... Bp
 else if (token  T2) {
 C1 ... Cq
 } else if (token  T3) {
 D1 ... Dr
 } else error("expected T1,T2,T3")
 where:

 T1 = first(B1 ... Bp)
 T2 = first(C1 ... Cq)
 T3 = first(D1 ... Dr)

first(B1 ... Bp) = {a | B1...Bp ...  aw }

T1, T2, T3 should be disjoint sets of tokens.

Computing first in the example

expr ::= term termList
termList ::= + term termList
 | - term termList
 | 
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | 
factor ::= name | (expr)
name ::= ident

first(name) = {ident}
first((expr)) = { (}
first(factor) = first(name)
 U first((expr))
 = {ident} U{ (}
 = {ident, (}

first(* factor factorList) = { * }

first(/ factor factorList) = { / }

first(factorList) = { *, / }

first(term) = first(factor) = {ident, (}

first(termList) = { + , - }

first(expr) = first(term) = {ident, (}

Algorithm for first

Given an arbitrary context-free grammar with a
set of rules of the form X ::= Y1 ... Yn compute
first for each right-hand side and for each
symbol.

How to handle

• alternatives for one non-terminal

• sequences of symbols

• nullable non-terminals

• recursion

Rules with Multiple Alternatives

A ::= B1 ... Bp
 | C1 ... Cq

 | D1 ... Dr

first(A) = first(B1... Bp)
 U first(C1 ... Cq)

 U first(D1 ... Dr)

Sequences

first(B1... Bp) = first(B1) if not nullable(B1)

first(B1... Bp) = first(B1) U ... U first(Bk)

if nullable(B1), ..., nullable(Bk-1) and

 not nullable(Bk) or k=p

Abstracting into Constraints

expr ::= term termList
termList ::= + term termList
 | - term termList
 | 
term ::= factor factorList
factorList ::= * factor factorList
 | / factor factorList
 | 
factor ::= name | (expr)
name ::= ident

expr' = term'
termList' = {+}
 U {-}

term' = factor'
factorList' = {*}
 U { / }

factor' = name' U { (}
name' = { ident }

recursive grammar: constraints over finite sets: expr' is first(expr)

nullable: termList, factorList
For this nice grammar, there is
no recursion in constraints.
Solve by substitution.

Example to Generate Constraints

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::=  | a

S' = X' U Y'
X' =

reachable (from S):
productive:
nullable:

terminals: a,b
non-terminals: S, X, Y, Z

First sets of terminals:
 S', X', Y', Z'  {a,b}

Example to Generate Constraints

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::=  | a

S' = X' U Y'
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

reachable (from S): S, X, Y, Z
productive: X, Z, S, Y
nullable: Z

terminals: a,b
non-terminals: S, X, Y, Z

These constraints are recursive.
How to solve them?
 S', X', Y', Z'  {a,b}
How many candidate solutions
• in this case?
• for k tokens, n nonterminals?

Iterative Solution of first Constraints

 S' X' Y' Z'
 {} {} {} {}
 {} {b} {b} {a}
 {b} {b} {a,b} {a}
{a,b} {a,b} {a,b} {a}
{a,b} {a,b} {a,b} {a}

S' = X' U Y'
X' = {b} U S'
Y' = Z' U X' U Y'
Z' = {a}

• Start from all sets empty.
• Evaluate right-hand side and

assign it to left-hand side.
• Repeat until it stabilizes.

1.
2.
3.
4.
5.

Sets grow in each step
• initially they are empty, so they can only grow
• if sets grow, the RHS grows (U is monotonic), and so does LHS
• they cannot grow forever: in the worst case contain all tokens

Constraints for Computing Nullable

• Non-terminal is nullable if it can derive 

S ::= X | Y
X ::= b | S Y
Y ::= Z X b | Y b
Z ::=  | a

S' = X' | Y'
X' = 0 | (S' & Y')
Y' = (Z' & X' & 0) | (Y' & 0)
Z' = 1 | 0

S', X', Y', Z'  {0,1}
 0 - not nullable
 1 - nullable
 | - disjunction
 & - conjunction

 S' X' Y' Z'
 0 0 0 0
 0 0 0 1
 0 0 0 1

1.
2.
3.

again monotonically growing

Computing first and nullable

• Given any grammar we can compute

– for each non-terminal X whether nullable(X)

– using this, the set first(X) for each non-terminal X

• General approach:

– generate constraints over finite domains,
following the structure of each rule

– solve the constraints iteratively

• start from least elements

• keep evaluating RHS and re-assigning the value to LHS

• stop when there is no more change

Rough General Idea

A ::= B1 ... Bp
 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token  T1) {
 B1 ... Bp
 else if (token  T2) {
 C1 ... Cq
 } else if (token  T3) {
 D1 ... Dr
 } else error("expected T1,T2,T3")
 where:

 T1 = first(B1 ... Bp)
 T2 = first(C1 ... Cq)
 T3 = first(D1 ... Dr)

T1, T2, T3 should be disjoint sets of tokens.

Exercise 1

A ::= B EOF
B ::=  | B B | (B)

• Tokens: EOF, (,)

• Generate constraints and compute nullable
and first for this grammar.

• Check whether first sets for different
alternatives are disjoint.

Exercise 2

S ::= B EOF
B ::=  | B (B)

• Tokens: EOF, (,)

• Generate constraints and compute nullable
and first for this grammar.

• Check whether first sets for different
alternatives are disjoint.

Exercise 3
Compute nullable, first for this grammar:

 stmtList ::=  | stmt stmtList

 stmt ::= assign | block

 assign ::= ID = ID ;

 block ::= beginof ID stmtList ID ends

Describe a parser for this grammar and explain how it
behaves on this input:

 beginof myPrettyCode

 x = u;
 y = v;
 myPrettyCode ends

Problem Identified

 stmtList ::=  | stmt stmtList

 stmt ::= assign | block

 assign ::= ID = ID ;

 block ::= beginof ID stmtList ID ends

Problem parsing stmtList:

– ID could start alternative stmt stmtList

– ID could follow stmt, so we may wish to parse 
that is, do nothing and return

• For nullable non-terminals, we must also
compute what follows them

General Idea for nullable(A)

A ::= B1 ... Bp
 | C1 ... Cq

 | D1 ... Dr

def A =
 if (token  T1) {
 B1 ... Bp
 else if (token  (T2 U TF)) {
 C1 ... Cq
 } else if (token  T3) {
 D1 ... Dr
 } // no else error, just return

where:

 T1 = first(B1 ... Bp)
 T2 = first(C1 ... Cq)
 T3 = first(D1 ... Dr)
 TF = follow(A)

Only one of the alternatives can be nullable (e.g. second)
T1, T2, T3, TF should be pairwise disjoint sets of tokens.

LL(1) Grammar - good for building
recursive descent parsers

• Grammar is LL(1) if for each nonterminal X

– first sets of different alternatives of X are disjoint

– if nullable(X), first(X) must be disjoint from follow(X)

• For each LL(1) grammar we can build
recursive-descent parser

• Each LL(1) grammar is unambiguous

• If a grammar is not LL(1), we can sometimes
transform it into equivalent LL(1) grammar

Computing if a token can follow

first(B1 ... Bp) = {a | B1...Bp ...  aw }

follow(X) = {a | S ...  ...Xa... }

There exists a derivation from the start symbol
that produces a sequence of terminals and
nonterminals of the form ...Xa...
(the token a follows the non-terminal X)

Rule for Computing Follow

Given X ::= YZ (for reachable X)

then first(Z)  follow(Y)
and follow(X)  follow(Z)

 now take care of nullable ones as well:

For each rule X ::= Y1 ... Yp ... Yq ... Yr

follow(Yp) should contain:

• first(Yp+1Yp+2...Yr)

• also follow(X) if nullable(Yp+1Yp+2Yr)

Compute nullable, first, follow

stmtList ::=  | stmt stmtList

stmt ::= assign | block

assign ::= ID = ID ;

block ::= beginof ID stmtList ID ends

Is this grammar LL(1)?

Conclusion of the Solution

The grammar is not LL(1) because we have

• nullable(stmtList)

• first(stmt)  follow(stmtList) = {ID}

• If a recursive-descent parser sees ID, it does
not know if it should

– finish parsing stmtList or

– parse another stmt

Table for LL(1) Parser: Example

S ::= B EOF

 (1)
B ::=  | B (B)
 (1) (2)

EOF ()

S {1} {1} {}

B {1} {1,2} {1}

nullable: B

first(S) = { (}
follow(S) = {}

first(B) = { (}
follow(B) = {), (, EOF }

Parsing table:

parse conflict - choice ambiguity:
grammar not LL(1)

empty entry:
when parsing S,
if we see) ,
report error

1 is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))

Table for LL(1) Parsing

Tells which alternative to take, given current token:

choice : Nonterminal x Token -> Set[Int]

A ::= (1) B1 ... Bp
 | (2) C1 ... Cq

 | (3) D1 ... Dr

For example, when parsing A and seeing token t

choice(A,t) = {2} means: parse alternative 2 (C1 ... Cq)

choice(A,t) = {1} means: parse alternative 3 (D1 ... Dr)

choice(A,t) = {} means: report syntax error

choice(A,t) = {2,3} : not LL(1) grammar

if t  first(C1 ... Cq) add 2
 to choice(A,t)

if t  follow(A) add K to choice(A,t)
where K is nullable alternative

Transform Grammar for LL(1)

S ::= B EOF
B ::=  | B (B)
 (1) (2)

EOF ()

S {1} {1} {}

B {1} {1,2} {1}

Transform the grammar
so that parsing table has
no conflicts.

Old parsing table:

conflict - choice ambiguity:
grammar not LL(1)

1 is in entry because (is in follow(B)
2 is in entry because (is in first(B(B))

EOF ()

S

B

S ::= B EOF
B ::=  | (B) B
 (1) (2)

 Left recursion is bad for LL(1)
choice(A,t)

Parse Table is Code for Generic Parser
var stack : Stack[GrammarSymbol] // terminal or non-terminal
stack.push(EOF);
stack.push(StartNonterminal);
var lex = new Lexer(inputFile)
while (true) {
 X = stack.pop
 t = lex.curent
 if (isTerminal(X))
 if (t==X) if (X==EOF) return success
 else lex.next // eat token t
 else parseError("Expected " + X)
 else { // non-terminal
 cs = choice(X)(t) // look up parsing table
 cs match { // result is a set
 case {i} => { // exactly one choice
 rhs = p(X,i) // choose correct right-hand side
 stack.push(reverse(rhs)) }
 case {} => parseError("Parser expected an element of " + unionOfAll(choice(X)))
 case _ => crash(“parse table with conflicts - grammar was not LL(1)")
 }
}

What if we cannot transform the
grammar into LL(1)?

1) Redesign your language

2) Use a more powerful parsing technique

