
Exercise: Balanced Parentheses 

Show that the following balanced parentheses 
grammar is ambiguous (by finding two parse 
trees for some input sequence) and find 
unambiguous grammar for the same language. 

   B ::=  | ( B ) | B B  
 



Remark 

• The same parse tree can be derived using two 
different derivations, e.g. 

 B -> (B) -> (BB) -> ((B)B) -> ((B)) -> (()) 

 B -> (B) -> (BB) -> ((B)B) -> (()B) -> (()) 

this correspond to different orders in which 
nodes in the tree are expanded 

• Ambiguity refers to the fact that there are 
actually multiple parse trees, not just multiple 
derivations. 



Towards Solution 

• (Note that we must preserve precisely the set 
of strings that can be derived) 

• This grammar: 

  B ::=  | A  
  A ::= ( ) | A A | (A) 

solves the problem with multiple  symbols 
generating different trees, but it is still 
ambiguous: string ( ) ( ) ( ) has two different 
parse trees 



Solution 
• Proposed solution: 

  B ::=  | B (B) 

• this is very smart! How to come up with it? 

• Clearly, rule B::= B B generates any sequence of B's. We can also encode it 
like this: 
 B ::= C* 
 C ::= (B) 

• Now we express sequence using recursive rule that does not create 
ambiguity: 

 B ::=  | C B 
 C ::= (B) 

• but now, look, we "inline"  C back into the rules for so we get exactly the 
rule 

 B ::=  | B (B) 

This grammar is not ambiguous and is the solution. We did not prove this fact 
(we only tried to find ambiguous trees but did not find any). 



Exercise 2: Dangling Else 

The dangling-else problem happens when the 
conditional statements are parsed using the 
following grammar.  
 S ::= S ; S 
 S ::= id := E 
 S ::= if E then S 
 S ::= if E then S else S  
Find an unambiguous grammar that accepts the 
same conditional statements and matches the 
else statement with the nearest unmatched if. 



Discussion of Dangling Else 

if (x > 0) then 

    if (y > 0) then 
       z  = x + y 
else x = - x 

• This is a real problem languages like C, Java 

– resolved by saying else binds to innermost if 

• Can we design grammar that allows all 
programs as before, but only allows parse 
trees where else binds to innermost if? 



Sources of Ambiguity in this Example 

• Ambiguity arises in this grammar here due to: 

– dangling else 

– binary rule for sequence (;) as for parentheses 

– priority between if-then-else and semicolon (;) 

if (x > 0) 

    if (y > 0) 
      z  = x + y; 
      u = z + 1       // last assignment is not inside if 

Wrong parse tree -> wrong generated code 

 

 



How we Solved It 
We identified a wrong tree and tried to refine the grammar to prevent it, by 
making a copy of the rules. Also, we changed some rules to disallow 
sequences inside if-then-else and make sequence rule non-ambiguous. The 
end result is something like this: 

 S::=  |A S   // a way to write  S::=A* 
 A ::= id := E 
 A ::= if E then A 
 A ::= if E then A' else A  

 A' ::= id := E 
 A' ::= if E then A' else A' 

At some point we had a useless rule, so we deleted it. 

We also looked at what a practical grammar would have to allow sequences 
inside if-then-else. It would add a case for blocks, like this: 

 A ::=  { S } 
 A' ::= { S } 

We could factor out some common definitions (e.g. define A in terms of A'), 
but that is not important for this problem. 



Exercise: Unary Minus 

1) Show that the grammar  

 A ::=  − A  
 A ::=  A − id  
 A ::=  id 

is ambiguous by finding a string that has two different 
syntax trees.  

2) Make two different unambiguous grammars for the 
same language: 
 a) One where prefix minus binds stronger than infix minus. 
 b) One where infix minus binds stronger than prefix minus. 
3) Show the syntax trees using the new grammars for the 
string you used to prove the original grammar ambiguous. 



Exercise:  
Left Recursive and Right Recursive 

We call a production rule “left recursive” if it is of the 
form 

 A ::= A p 

for some sequence of symbols p. Similarly, a "right-
recursive" rule is of a form 

 A ::= q A 

Is every context free grammar that contains both left 
and right recursive rule for a some nonterminal A 
ambiguous? 

Answer: yes, if A is reachable from the top symbol and 
productive can produce a sequence of tokens 



Making Grammars Unambiguous 
- some recipes - 

 

 

Ensure that there is always only one parse tree 

 

Construct the correct abstract syntax tree 



Goal: Build Expression Trees 

abstract class Expr 

case class Variable(id : Identifier) extends Expr 

case class Minus(e1 : Expr, e2 : Expr) extends Expr 

case class Exp(e1 : Expr, e2 : Expr) extends Expr 

 

 different order gives different results: 

Minus(e1, Minus(e2,e3))  e1 - (e2 - e3) 

Minus(Minus(e1,e2),e3)  (e1 - e2) - e3 



Ambiguous Expression Grammar 

expr ::= intLiteral | ident 

          | expr + expr | expr / expr 

 
foo + 42 / bar + arg 

 
Show that the input above has two parse trees! 

Each node in parse tree is given by  
one grammar alternative. 



1) Layer the grammar by priorities 

expr ::= term (- term)* 

term ::= factor (^ factor)* 

factor ::= id | (expr) 

lower priority binds weaker,  

so it goes outside 

expr ::= ident | expr - expr | expr ^ expr  | (expr) 



2) Building trees: left-associative "-" 

LEFT-associative operator 

x – y – z     (x – y) – z  

  Minus(Minus(Var(“x”),Var(“y”)),   Var(“z”)) 

def expr : Expr = { 

   var e = 

   while (lexer.token == MinusToken) { 

      lexer.next 

       

   }  

   e 

} 

e = Minus(e, term) 

term 



3) Building trees: right-associative "^" 

RIGHT-associative operator – using recursion  
   (or also loop and then reverse a list) 
x ^ y ^ z     x ^ (y ^ z) 
  Exp(Var(“x”),   Exp(Var(“y”), Var(“z”))  ) 

def expr : Expr = { 

   val e = factor 

   if (lexer.token == ExpToken) { 

      lexer.next 

      Exp(e, expr) 

   } else e 

} 



Manual Construction of Parsers 

• Typically one applies previous transformations 
to get a nice grammar 

• Then we write recursive descent parser as set 
of mutually recursive procedures that check if 
input is well formed 

• Then enhance such procedures to construct 
trees, paying attention to the associativity and 
priority of operators 



Grammar Rules as Logic Programs 
Consider grammar G:   S ::= a | b S 

L(_) - language of non-terminal 

L(G) = L(S) where S is the start non-terminal 

L(S) = L(G) = { bna | n >= 0} 

From meaning of grammars: 

 w  L(S)  w=a \/  w  L(b S) 

To check left hand side, we need to check right 
hand side. Which of the two sides? 

– restrict grammar, use current symbol to decide - LL(1) 

– use dynamic programming (CYK) for any grammar 



Recursive Descent - LL(1) 

• See wiki for 

– computing first, nullable, follow for non-terminals 
of the grammar 

– construction of parse table using this information 

– LL(1) as an interpreter for the parse table 



Grammar vs Recursive Descent Parser 

expr ::= term termList 
termList ::= + term termList  
      |  - term termList  
     |  
term ::= factor factorList 
factorList ::= * factor factorList  
                    | / factor factorList  
                    |  
factor ::= name | ( expr ) 
name ::= ident 

def expr = { term; termList } 
def termList = 
  if (token==PLUS) { 
     skip(PLUS); term; termList 
  } else if (token==MINUS) 
     skip(MINUS); term; termList 
  } 

def term = { factor; factorList } 

... 

def factor = 
  if (token==IDENT) name 
  else if (token==OPAR) { 
    skip(OPAR); expr; skip(CPAR) 
  } else error("expected ident or )") 



Rough General Idea 

A ::=  B1 ... Bp 
       | C1 ... Cq 

       | D1 ... Dr 

def A =  
  if (token  T1) { 
     B1 ... Bp 
  else if (token  T2) { 
     C1 ... Cq 
  } else if (token  T3) { 
     D1 ... Dr 
  } else error("expected T1,T2,T3") 
 where: 

 T1 = first(B1 ... Bp) 
 T2 = first(C1 ... Cq) 
 T3 = first(D1 ... Dr) 

first(B1 ... Bp) = {a | B1...Bp    ...    aw } 

T1, T2, T3 should be disjoint sets of tokens. 



Computing first in the example 

expr ::= term termList 
termList ::= + term termList  
      |  - term termList  
     |  
term ::= factor factorList 
factorList ::= * factor factorList  
                    | / factor factorList  
                    |  
factor ::= name | ( expr ) 
name ::= ident 

first(name) = {ident} 
first(( expr ) ) = { ( } 
first(factor) = first(name) 
                     U first( ( expr ) ) 
                   = {ident} U{ ( } 
                   = {ident, ( } 

first(* factor factorList) = { * }  

first(/ factor factorList) = { / }  

first(factorList) = { *, / } 

first(term) = first(factor) = {ident, ( } 

first(termList) = { + , - }  

first(expr) = first(term) = {ident, ( } 



Algorithm for first 

Given an arbitrary context-free grammar with a 
set of rules of the form X ::= Y1 ... Yn  compute 
first for each right-hand side and for each 
symbol. 

How to handle 

• alternatives for one non-terminal 

• sequences of symbols 

• nullable non-terminals 

• recursion 



Rules with Multiple Alternatives 

A ::=  B1 ... Bp 
       | C1 ... Cq 

       | D1 ... Dr 

first(A) =  first(B1... Bp) 
             U first(C1 ... Cq) 

             U first(D1 ... Dr) 

Sequences 

first(B1... Bp) = first(B1)  if not nullable(B1) 

first(B1... Bp) = first(B1) U ... U first(Bk) 

if nullable(B1), ..., nullable(Bk-1) and 

 not nullable(Bk) or k=p 



Abstracting into Constraints 

expr ::= term termList 
termList ::= + term termList  
      |  - term termList  
     |  
term ::= factor factorList 
factorList ::= * factor factorList  
                    | / factor factorList  
                    |  
factor ::= name | ( expr ) 
name ::= ident 

expr' = term'  
termList' =  {+} 
      U {-} 
 
term' = factor' 
factorList' = {*} 
                  U { / }  
 
factor' = name' U { ( } 
name' = { ident } 

recursive grammar: constraints over finite sets: expr' is first(expr) 

nullable: termList, factorList 
For this nice grammar, there is 
no recursion in constraints. 
Solve by substitution. 



Example to Generate Constraints 

S ::= X | Y  
X ::= b | S Y  
Y ::= Z X b | Y b 
Z ::=  | a 

S' = X' U Y'  
X' = 

reachable (from S): 
productive: 
nullable: 

terminals: a,b 
non-terminals: S, X, Y, Z 

First sets of terminals:  
   S', X', Y', Z'  {a,b} 



Example to Generate Constraints 

S ::= X | Y  
X ::= b | S Y  
Y ::= Z X b | Y b 
Z ::=  | a 

S' = X' U Y'  
X' = {b} U S' 
Y' = Z' U X'   U Y' 
Z' = {a} 

reachable (from S): S, X, Y, Z 
productive: X, Z, S, Y 
nullable: Z 

terminals: a,b 
non-terminals: S, X, Y, Z 

These constraints are recursive. 
How to solve them? 
 S', X', Y', Z'  {a,b} 
How many candidate solutions 
• in this case? 
• for k tokens, n nonterminals? 



Iterative Solution of first Constraints 

     S'    X'    Y'        Z'  
    {}     {}     {}        {} 
    {}     {b}   {b}     {a} 
   {b}   {b}  {a,b}   {a} 
{a,b} {a,b} {a,b}   {a} 
{a,b} {a,b} {a,b}   {a} 

S' = X' U Y'  
X' = {b} U S' 
Y' = Z' U X'   U Y' 
Z' = {a} 

• Start from all sets empty. 
• Evaluate right-hand side and 

assign it to left-hand side. 
• Repeat until it stabilizes. 

 
1. 
2. 
3. 
4. 
5. 

Sets grow in each step 
• initially they are empty, so they can only grow 
• if sets grow, the RHS grows (U is monotonic), and so does LHS 
• they cannot grow forever: in the worst case contain all tokens 



Constraints for Computing Nullable 

• Non-terminal is nullable if it can derive  

S ::= X | Y  
X ::= b | S Y  
Y ::= Z X b | Y b 
Z ::=  | a 

S' = X' | Y'  
X' = 0 | (S' & Y') 
Y' = (Z' & X' & 0) | (Y' & 0) 
Z' = 1 | 0 

S', X', Y', Z'  {0,1} 
   0  - not nullable 
   1  - nullable 
    |  - disjunction 
    & - conjunction 

     S'    X'    Y'    Z'  
     0     0     0     0 
     0     0     0     1 
     0     0     0     1 

 
1. 
2. 
3. 

again monotonically growing 



Computing first and nullable 

• Given any grammar we can compute 

– for each non-terminal X whether nullable(X) 

– using this, the set first(X) for each non-terminal X 

• General approach: 

– generate constraints over finite domains, 
following the structure of each rule 

– solve the constraints iteratively 

• start from least elements 

• keep evaluating RHS and re-assigning the value to LHS 

• stop when there is no more change 



Rough General Idea 

A ::=  B1 ... Bp 
       | C1 ... Cq 

       | D1 ... Dr 

def A =  
  if (token  T1) { 
     B1 ... Bp 
  else if (token  T2) { 
     C1 ... Cq 
  } else if (token  T3) { 
     D1 ... Dr 
  } else error("expected T1,T2,T3") 
 where: 

 T1 = first(B1 ... Bp) 
 T2 = first(C1 ... Cq) 
 T3 = first(D1 ... Dr) 

 

T1, T2, T3 should be disjoint sets of tokens. 



Exercise 1 

A ::= B EOF 
B ::=  | B B | (B) 

• Tokens: EOF, (, ) 

• Generate constraints and compute nullable 
and first for this grammar.  

• Check whether first sets for different 
alternatives are disjoint. 



Exercise 2 

S ::= B EOF 
B ::=  | B (B) 

• Tokens: EOF, (, ) 

• Generate constraints and compute nullable 
and first for this grammar.  

• Check whether first sets for different 
alternatives are disjoint. 



Exercise 3 
Compute nullable, first for this grammar: 

 stmtList ::=  | stmt  stmtList  

 stmt ::= assign | block  

 assign ::= ID  =  ID  ;  

 block ::= beginof  ID stmtList ID ends 

Describe a parser for this grammar and explain how it 
behaves on this input: 

 beginof myPrettyCode  

              x = u;  
              y = v;  
          myPrettyCode ends 



Problem Identified 

 stmtList ::=  | stmt  stmtList  

 stmt ::= assign | block  

 assign ::= ID  =  ID  ;  

 block ::= beginof  ID stmtList ID ends 

Problem parsing stmtList:  

– ID could start alternative stmt stmtList  

– ID could follow stmt, so we may wish to parse  
that is, do nothing and return 

• For nullable non-terminals, we must also 
compute what follows them 



General Idea for nullable(A) 

A ::=  B1 ... Bp 
       | C1 ... Cq 

          | D1 ... Dr 

def A =  
  if (token  T1) { 
     B1 ... Bp 
  else if (token  (T2  U  TF)) { 
     C1 ... Cq 
  } else if (token  T3) { 
     D1 ... Dr 
  } // no else error, just return 

where: 

 T1 = first(B1 ... Bp) 
 T2 = first(C1 ... Cq) 
 T3 = first(D1 ... Dr) 
 TF = follow(A) 

Only one of the alternatives can be nullable (e.g. second) 
T1, T2, T3, TF  should be pairwise disjoint sets of tokens. 



LL(1) Grammar - good for building 
recursive descent parsers  

• Grammar is LL(1) if for each nonterminal X 

– first sets of different alternatives of X are disjoint 

– if nullable(X), first(X) must be disjoint from follow(X) 

• For each LL(1) grammar we can build  
recursive-descent parser 

• Each LL(1) grammar is unambiguous 

• If a grammar is not LL(1), we can sometimes 
transform it into equivalent LL(1) grammar 

 



Computing if a token can follow 

first(B1 ... Bp) = {a | B1...Bp    ...    aw } 

follow(X) = {a | S    ...    ...Xa... } 

 

There exists a derivation from the start symbol 
that produces a sequence of terminals and 
nonterminals of the form  ...Xa... 
(the token a follows the non-terminal X) 



Rule for Computing Follow 

Given  X ::= YZ  (for reachable X) 

then first(Z)  follow(Y) 
and  follow(X)  follow(Z) 

 now take care of nullable ones as well: 

 
For each rule X ::= Y1 ... Yp ... Yq ... Yr 

follow(Yp) should contain: 

• first(Yp+1Yp+2...Yr) 

• also follow(X) if  nullable(Yp+1Yp+2Yr) 



Compute nullable, first, follow 

stmtList ::=  | stmt  stmtList  

stmt ::= assign | block  

assign ::= ID  =  ID  ;  

block ::= beginof  ID stmtList ID ends 

 

 

Is this grammar LL(1)? 



Conclusion of the Solution 

The grammar is not LL(1) because we have  

• nullable(stmtList) 

• first(stmt)  follow(stmtList) = {ID}  

 

• If a recursive-descent parser sees ID, it does 
not know if it should  

– finish parsing stmtList or 

– parse another stmt 



Table for LL(1) Parser: Example 

S ::= B EOF  

             (1) 
B ::=   | B (B) 
         (1)      (2) 

 
EOF ( ) 

S {1} {1} {} 

B {1} {1,2} {1} 

nullable: B 

first(S) = { ( } 
follow(S) = {} 

first(B) = { ( } 
follow(B) = { ), (, EOF } 

Parsing table: 

parse conflict - choice ambiguity: 
grammar not LL(1) 

empty entry: 
when parsing S, 
if we see ) , 
report error 

1 is in entry because ( is in follow(B) 
2 is in entry because ( is in first(B(B)) 



Table for LL(1) Parsing 

Tells which alternative to take, given current token: 

choice : Nonterminal x Token -> Set[Int] 

A ::=  (1)  B1 ... Bp 
       | (2)  C1 ... Cq 

       | (3)  D1 ... Dr 

For example, when parsing A and seeing token t 

choice(A,t) = {2}  means: parse alternative 2   (C1 ... Cq ) 

choice(A,t) = {1}  means: parse alternative 3   (D1 ... Dr) 

choice(A,t) = {}    means: report syntax error 

choice(A,t) = {2,3} : not LL(1) grammar 

if   t  first(C1 ... Cq)   add 2 
    to choice(A,t) 

if   t  follow(A) add K to choice(A,t) 
where K is nullable alternative  



Transform Grammar for LL(1) 

S ::= B EOF  
B ::=   | B (B) 
         (1)      (2) 

 

EOF ( ) 

S {1} {1} {} 

B {1} {1,2} {1} 

Transform the grammar 
so that parsing table has 
no conflicts. 

Old parsing table: 

conflict - choice ambiguity: 
grammar not LL(1) 

1 is in entry because ( is in follow(B) 
2 is in entry because ( is in first(B(B)) 

EOF ( ) 

S 

B 

S ::= B EOF  
B ::=   | (B) B 
         (1)      (2) 

 Left recursion is bad for LL(1) 
choice(A,t)  



Parse Table is Code for Generic Parser 
var stack : Stack[GrammarSymbol] // terminal or non-terminal 
stack.push(EOF); 
stack.push(StartNonterminal); 
var lex = new Lexer(inputFile) 
while (true) { 
 X = stack.pop 
  t = lex.curent 
  if (isTerminal(X)) 
     if (t==X)   if (X==EOF) return success 
                      else lex.next // eat token t  
    else parseError("Expected " + X) 
  else { // non-terminal 
    cs = choice(X)(t) // look up parsing table 
    cs match { // result is a set 
    case {i} => { // exactly one choice 
      rhs = p(X,i) // choose correct right-hand side 
      stack.push(reverse(rhs)) } 
    case {} => parseError("Parser expected an element of " + unionOfAll(choice(X))) 
    case _ => crash(“parse table with conflicts - grammar was not LL(1)") 
  } 
} 



What if we cannot transform the 
grammar into LL(1)? 

 

1) Redesign your language 

 

2) Use a more powerful parsing technique 


