
Exercise 1

Consider a language with the following tokens and token classes:

ident ::= letter (letter|digit)*
LT ::= "<"
GT ::= ">"
shiftL ::= "<<"
shiftR ::= ">>"
dot ::= "."
LP ::= "("
RP ::= ")"

Give a sequence of tokens for the following character sequence,
applying the longest match rule:

 (List<List<Int>>)(myL).headhead

Note that the input sequence contains no space character

Exercise 2

Find a regular expression that generates all alternating
sequences of 0 and 1 with arbitrary length (including
lengths zero, one, two, ...). For example, the
alternating sequences of length one are 0 and 1, length
two are 01 and 10, length three are 010 and 101. Note
that no two adjacent character can be the same in an
alternating sequence.

Exercise 3

Construct a DFA for the language of well-nested
parenthesis with a maximal nesting depth of 3. For
example, ε, ()(), (()(())) and (()())()(), but not (((()))) nor
(()(()(()))), nor ())).

Exercise 4
• Find two equivalent states in the automaton, and merge them to produce a

smaller automaton that recognizes the same language. Repeat until there
are no longer equivalent states.

• Recall that the general algorithm for minimizing finite automata works in
reverse. First, find all pairs of inequivalent states. States X, Y are inequivalent
if X is final and Y is not, or (by iteration) if and and X’ and Y’ are
inequivalent. After this iteration ceases to find new pairs of inequivalent
states, then X, Y are equivalent, if they are not inequivalent.

Exercise 5

Let rtail be a function that returns all the symbols of a
string except the last one. For example, rtail(Lexer) =
Lexe. rtail is undefined for an empty string. If R is a
regular expression, then rtail(R) applies the function to
all non-empty elements, and removes  if it is in R. For
example, rtail({aba,aaaa,bb, }) = {ab,aaa,b}
 L(rtail(abba|ba*|ab*)) = L(ba*|ab*|)

• Prove that if R is regular, then so is rtail(R)

• Give an algorithm for computing the regular
expression for rtail(R) if R is given by a regular
expression

Exercise 6: Grammar Equivalence

Show that each string that can be derived by
grammar G1

 B ::=  | (B) | B B
can also be derived by grammar G2

 B ::=  | (B) B

and vice versa. In other words, L(G1) = L(G2)

Remark: there is no algorithm to check for equivalence
of arbitrary grammars. We must be clever.

Grammars

Ambiguous grammar: if some token sequence
has multiple parse trees

(then it is has multiple abstract trees)

Two trees, each following the grammar, their
leaves both give the same token sequence.

Exercise: Another Balanced
Parenthesis Grammar

Show that the following balanced parentheses
grammar is ambiguous (by finding two parse
trees for some input sequence) and find
unambiguous grammar for the same language.

 B ::=  | (B) | B B

Is this grammar ambiguous?

 B ::=  | (B) B

Dangling Else

The dangling-else problem happens when the
conditional statements are parsed using the following
grammar.
 S ::= S ; S
 S ::= id := E
 S ::= if E then S
 S ::= if E then S else S

Give a sequence of tokens that has two parse trees.

Find an unambiguous grammar that accepts the same
conditional statements and matches the else
statement with the nearest unmatched if.

