D)

Exercise 1

Consider a language with the following tokens and token classes:
ident ::= letter (letter|digit)*

LT = "< LP (D LT ID LT |p sWHRRP (P ID RP DOT ID
GT ::=">" L—
shiftlL ::= "<<"
shiftR ::=">>"
dot ::="."

LP ::="("

RP ::=")"

Give a sequende of{ tokens for the following character sequence,
applying the lonhgest match rule:
) |

(List<List<Int>>)(myL).headhead |
Note that the input sequence contains no space character

Exercise 2

Find a regular expression that generates all alternating
sequences of 0 and 1 with arbitrary length (including
lengths zero, one, two, ...). For example, the
alternating sequences of length one are 0 and 1, length
two are 01 and 10, length three are 010 and 101. Note
that no two adjacent character can be the same in an

alternating sequence. 010101\ 0y O\0

9 0(10)*|1 01)*\2\ 4oyt | £ (oD¥D
olL ¥
1? (01)* Of

Exercise 3

Construct a DFA for the language of well-nested
parenthesis with a maximal nesting depth of 3. For

example, g, ()(), ()(())) and (()())()(), but not (((()))) nor
(OCO(0)), nor ())). (CO)Y OO

22300
0 ‘>O
\ @CO O%D ba,l»

Exercise 4

Find two equivalent states in the automaton, and merge them to produce a
smaller automaton that recognizes the same language. Repeat until there
are no longer equivalent states.

Recall that the general algorithm for minimizing finite automata works in
reverse. First, find all pairs of inequivalent states. States X, Y are inequivalent
if X is final and Y is not, or (by iteration) if and and X’ and Y’ are
inequivalent. After this iteration ceases to find new pairs of inequivalent
states, then X, Y are equivalent, if they are not inequivalent. 0O

Yy O 2) & -
2 0'0 & _aF

Exercise 5

Let rtail be a function that returns all the symbols of a
string except the last one. For example, rtail(Lexer) =
Lexe. rtail is undefined for an empty string. If R is a
regular expression, then rtail(R) applies the function to
all non-empty elements, and removes ¢ if it is in R. For
example, rtail({aba,aaaa,bb, €}) = {ab,aaa,b}
L(rtail(abba|ba*|ab*)) = L(ba*|ab™*|¢)
e Prove that if R is regular, then so is rtail(R)

e Give an algorithm for computing the regular
expression for rtail(R) if R is given by a regular
expression

Exercise 6: Grammar Equivalence

Show that each string that can be derived by
grammar G,

— B:u=¢|[(B)|BB
can also be derived by grammar G,

B::=¢|(B)B
and vice versa. In other words, L(G,) = L(G,)

Remark: there is no algorithm to check for equivalence
of arbitrary grammars. We must be clever.

Grammars

Ambiguous grammar: if some token sequence
has multiple parse trees

(then it is has multiple abstract trees)

Two trees, each following the grammar, their
leaves both give the same token sequence.

Exercise: Another Balanced
Parenthesis Grammar

Show that the following balanced parentheses
grammar is ambiguous (by finding two parse
trees for some input sequence) and find
unambiguous grammar for the same language.

B::=¢|(B)|BB

Is this grammar ambiguous?
B::=¢|(B)B

Dangling Else

The dangling-else problem happens when the
conditional statements are parsed using the following

grammar. £ €. then
Su=35;95 i§ B, khen
S::=id:=E / w:= Eq
S:=ifEthenS Rlse Y= &,y

S:=ifEthenSelseS
Give a sequence of tokens that has two parse trees.

Find an unambiguous grammar that accepts the same
conditional statements and matches the else
statement with the nearest unmatched if.

