
Exercise 1 

Consider a language with the following tokens and token classes: 

ident ::= letter (letter|digit)*  
LT ::= "<"  
GT ::= ">"  
shiftL ::= "<<"  
shiftR ::= ">>"  
dot ::= "."  
LP ::= "("  
RP ::= ")" 

Give a sequence of tokens for the following character sequence, 
applying the longest match rule: 

  (List<List<Int>>)(myL).headhead 

Note that the input sequence contains no space character 



Exercise 2 

Find a regular expression that generates all alternating 
sequences of 0 and 1 with arbitrary length (including 
lengths zero, one, two, ...). For example, the 
alternating sequences of length one are 0 and 1, length 
two are 01 and 10, length three are 010 and 101. Note 
that no two adjacent character can be the same in an 
alternating sequence. 



Exercise 3 

Construct a DFA for the language of well-nested 
parenthesis with a maximal nesting depth of 3. For 
example, ε, ()(), (()(())) and (()())()(), but not (((()))) nor 
(()(()(()))), nor ())). 



Exercise 4 
• Find two equivalent states in the automaton, and merge them to produce a 

smaller automaton that recognizes the same language. Repeat until there 
are no longer equivalent states.  

• Recall that the general algorithm for minimizing finite automata works in 
reverse. First, find all pairs of inequivalent states. States X, Y are inequivalent 
if X is final and Y is not, or (by iteration) if  and  and X’ and Y’ are 
inequivalent. After this iteration ceases to find new pairs of inequivalent 
states, then X, Y are equivalent, if they are not inequivalent. 

 



Exercise 5 

Let rtail be a function that returns all the symbols of a 
string except the last one. For example, rtail(Lexer) = 
Lexe. rtail is undefined for an empty string. If R is a 
regular expression, then rtail(R) applies the function to 
all non-empty elements, and removes  if it is in R. For 
example, rtail({aba,aaaa,bb, }) = {ab,aaa,b} 
 L(rtail(abba|ba*|ab*)) = L(ba*|ab*|) 

• Prove that if R is regular, then so is rtail(R) 

• Give an algorithm for computing the regular 
expression for rtail(R) if R is given by a regular 
expression 



Exercise 6: Grammar Equivalence 

Show that each string that can be derived by 
grammar G1 

   B ::=  | ( B ) | B B  
can also be derived by grammar G2 

   B ::=  | ( B ) B 

and vice versa. In other words, L(G1) = L(G2) 

 

Remark: there is no algorithm to check for equivalence 
of arbitrary grammars. We must be clever. 



Grammars 



Ambiguous grammar: if some token sequence 
has multiple parse trees 

(then it is has multiple abstract trees) 

 

Two trees, each following the grammar, their 
leaves both give the same token sequence. 



Exercise: Another Balanced 
Parenthesis Grammar 

Show that the following balanced parentheses 
grammar is ambiguous (by finding two parse 
trees for some input sequence) and find 
unambiguous grammar for the same language. 

   B ::=  | ( B ) | B B  
 

 

Is this grammar ambiguous? 

  B ::=  | ( B ) B 



Dangling Else 

The dangling-else problem happens when the 
conditional statements are parsed using the following 
grammar.  
 S ::= S ; S 
 S ::= id := E 
 S ::= if E then S 
 S ::= if E then S else S  

Give a sequence of tokens that has two parse trees. 

Find an unambiguous grammar that accepts the same 
conditional statements and matches the else 
statement with the nearest unmatched if. 


