
Range Analysis Domain for BigInt 
Domain values D include: 

• bounded intervals of integers: [a,b]  

• intervals unbounded from one side (-∞,b] , [a,∞) 

• empty set, denoted  

• the set of all integers, denoted T 

Formally, if Z denotes integers, then 

D = {,T} U { [a,b]   | a,bZ}  
       U {(-∞,b]  | bZ}  
                U {[a,∞)   | aZ} 

D is an infinite set! 



Sequences in Analysis  
are Monotonically Growing 

Transfer functions (describe how statements affect elements of 
D) should be monotonic:  
if we start with a representation of a larger set of states, the 
representation of the resulting set of states should also be larger 

x = x + 2 

d1 ≤ d2   implies   [[x=x+2]](d1) ≤ [[x=x+2]](d2) 
 
We start from  everywhere except entry 
So in first step, the values can only grow 
 ≤ d2   implies   [[x=x+2]]() ≤ [[x=x+2]](d2) 
Values computed in second step are also bigger 
If xn = Fn() then x0 =  ≤ x1

 

 xn ≤ xn+1    / F 

 F(xn) ≤ F(xn+1) i.e.  xn+1 ≤ xn+2 

x: [a,b] 

x: [a+2,b+2] 



How Long Does Analysis Take? 

• We explore this question by comparing 

– range analysis: maintain intervals 

– constant propagation:  
maintains indication whether the value is constant 



Iterating Range Analysis 

   x = 1 
 
   while (x < n) { 
     x = x + 2 
   } 
 

Find the number of updates range analysis needs to 
stabilize in the following  code 

n = 1000 



Iterating Range Analysis 

   x = 1 
 
   while (x < n) { 
     x = x + 2 
   } 
 

For unknown program 
inputs and unbounded 
domains, such analysis 
need not terminate! 

n = readInput()  //anything, so n becomes T 

 
One solution: “smaller” domain 

Now, if we assume that any number can be entered from 
the user, what is now the number of steps? 



Range Analysis with  
Finite Set of Endpoints 

Pick a set W of “interesting” interval end-points 
Example:  

 W = {-128, 0, 127} 

 

D = {,T} U { [a,b]   | a,bW, a ≤ b}  
       U {(-∞,b] | b W}  
                U {[a,∞)   | a W} 

 

D is a finite set!  How many elements does it have? 



Domain Lattice Diagram for this W: 14 elements 
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Re-Run Analysis with Finite Endpoint Set 

   x = 1 
   n = 1000 
   while (x < n) { 
     x = x + 2 
   } 
 

What is the number of updates? 

   x = 1 
   n = readInt() 
   while (x < n) { 
     x = x + 2 
   } 
 



Constant Propagation Domain 
Domain values D are: 

– intervals [a,a], denoted simply ‘a’ 

– empty set, denoted  and set of all integers T 

Formally, if Z denotes integers, then 

 D = {,T} U { a | aZ}  
D is an infinite set 

      T       

 

1 0 -1 -2 2 … … 



Constant Propagation Transfer Functions 

x = y + z 

For  each variable (x,y,z) and each 
CFG node (program point) 
we store:  , a constant, or T 

abstract class Element 
case class Top extends Element 
case class Bot extends Element 
case class Const(v:Int) extends Element 
var facts : Map[Nodes,Map[VarNames,Element]] 
   what executes during analysis of x=y+z : 
oldY = facts(v1)("y") 
oldZ = facts(v1)("z") 
newX = tableForPlus(oldY, oldZ) 
facts(v2) = facts(v2) join facts(v1).updated("x", newX) 

def tableForPlus(y:Element, z:Element) =  
(x,y) match { 
case (Const(cy),Const(cz)) => Const(cy+cz) 
case (Bot,_) => Bot 
case (_,Bot) => Bot 
case (Top,Const(cz)) => Top 
case (Const(cy),Top) => Top 
} 

table for +: 



Run Constant Propagation 

   x = 1 
 
   while (x < n) { 
     x = x + 2 
   } 
 

n = 1000 

What is the number of updates? 

   x = 1 
   n = readInt() 
   while (x < n) { 
     x = x + 2 
   } 
 



Observe 

• Range analysis with W = {-128, 0, 127} has a 
finite domain 

• Constant propagation has infinite domain  
(for every integer constant, one element) 

• Yet, constant propagation finishes sooner! 

– it is not about the size of the domain 

– it is about the height 



Height of Lattice: Length of Max. Chain 

∞ 

∞ 

∞ ∞ 

∞ 

∞ 
∞ ∞      T      

      T       

 

1 0 -1 -2 2 

height=2 
size =∞  

height=5 
size=14 

… … 



Chain of Length n 

• A set of elements x0,x1 ,..., xn in D that are linearly 
ordered, that is  x0 < x1 < ... < xn 

• A lattice can have many chains. Its height is the 
maximum n for all the chains 

• If there is no upper bound on lengths of chains, 
we say lattice has infinite height 

• Any monotonic sequence of distinct elements has 
length at most equal to lattice height 
– including sequence occuring during analysis! 

– such sequences are always monotonic 



In constant propagation, each value 
can change only twice 

   x = 1 
   n = 1000 
   while (x < n) { 
     x = x + 2 
   } 
 

 

1 0 -1 -2 2 

height=2 
size =∞  … … 

consider value for x  
before assignment 
• Initially:  
• changes 1st time to: 1 

• change 2nd time to: T 
total changes: two (height) 

var facts : Map[Nodes,Map[VarNames,Element]] 

T 

Total number of changes bounded by:    height∙|Nodes| ∙|Vars| 



Exercise 

B32 –  the set of all 32-bit integers  

What is the upper bound for number of changes in 
the entire analysis for:  

– 3 variables,  

– 7 program points 

for these two analyses: 

1) constant propagation for constants from B32 

 

2) The following domain D: 

 D = {} U { [a,b] | a,b B32  , a ≤ b} 



Height of B32 

D = {} U { [a,b] | a,b B32  , a ≤ b} 

One possible chain of maximal length: 

 

 

 

… 

 

 

[MinInt,MaxInt] 



Initialization Analysis 

uninitialized 

first  
initialization 

initialized 



What does javac say to this: 
class Test { 

    static void test(int p) { 

 int n; 

 p = p - 1; 

 if (p > 0) { 

     n = 100; 

 } 

 while (n != 0) { 

     System.out.println(n); 

     n = n - p; 

 } 

    } 

} 

Test.java:8: variable n might not have been initialized 
 while (n > 0) { 
               ^ 
1 error 



Program that compiles in java 
class Test { 

    static void test(int p) { 

 int n; 

 p = p - 1; 

 if (p > 0) { 

     n = 100; 

 } 

 else { 

     n = -100; 

 } 

 while (n != 0) { 

     System.out.println(n); 

     n = n - p; 

 } 

    } 

} 

We would like variables to be 
initialized on all execution paths.  
 
Otherwise, the program execution 
could be undesirable affected by the 
value that was in the variable initially. 
 
We can enforce such check using 
initialization analysis. 



What does javac say to this? 
 

    static void test(int p) { 

 int n; 

 p = p - 1; 

 if (p > 0) { 

     n = 100; 

 } 

 System.out.println(“Hello!”); 

 if (p > 0) { 

     while (n != 0) { 

         System.out.println(n); 

         n = n - p; 

     } 

                } 

    } 



Initialization Analysis 
T indicates presence of flow from states where 
variable was not initialized: 

• If variable is possibly uninitialized, we use T 

• Otherwise (initialized, or unreachable):  

class Test { 

    static void test(int p) { 

 int n; 

 p = p - 1; 

 if (p > 0) { 

     n = 100; 

 } 

 else { 

     n = -100; 

 } 

 while (n != 0) { 

     System.out.println(n); 

     n = n - p; 

 } 

    } 

} 

If var occurs anywhere but left-hand side 
of assignment and has value T, report error 



Sketch of Initialization Analysis 

• Domain: for each variable, for each program point:  
D = {,T} 

• At program entry, local variables: T ;  parameters:  

• At other program points: each variable:   

• An assignment   x = e  sets variable x to  

• lub (join,    ) of any value with T gives T 

– uninitialized values are contagious along paths 

–  value for x means there is definitely no possibility for 
accessing uninitialized value of x 



Run initialization analysis Ex.1 

int n; 

p = p - 1; 

if (p > 0) { 

    n = 100; 

} 

while (n != 0) { 

    n = n - p; 

} 



Run initialization analysis Ex.2 

int n; 

p = p - 1; 

if (p > 0) { 

    n = 100; 

} 

if (p > 0) { 

    n = n - p; 

} 



Liveness Analysis 

dead 

live 

dead 

last use 

first  
initialization 

dead 
live 

Variable is dead if its current value will not be used in the future. 
If there are no uses before it is reassigned or the execution ends, 
then the variable is surely dead at a given point. 



Example: 

x = y + x 

 

if (x > y)  

What is Written and What Read 

Purpose: 
Register allocation: 

find good way to decide 
which variable should go 
to which register at what 
point in time. 



How Transfer Functions Look 



Initialization: Forward Analysis 

Liveness: Backward Analysis 

while (there was change) 
   pick edge (v1,statmt,v2) from CFG 
             such that facts(v1) has changed 
   facts(v2)=facts(v2) join transferFun(statmt, facts(v1)) 
} 

while (there was change) 
   pick edge (v1,statmt,v2) from CFG 
             such that facts(v2) has changed 
   facts(v1)=facts(v1) join transferFun(statmt, facts(v2)) 
} 



Example 

x = m[0] 

y = m[1] 

xy = x * y 

z = m[2] 

yz = y*z 

xz = x*z 

res1 = xy + yz 

m[3] = res1 + xz 



Data Representation Overview 



Original and Target Program have 
Different Views of Program State 

• Original program: 
– local variables given by names (any number of them) 
– each procedure execution has fresh space for its variables 

(even if it is recursive) 
– fields given by names 

• Java Virtual Machine 
– local variables given by slots (0,1,2,…), any number 
– intermediate values stored in operand stack 
– each procedure call gets fresh slots and stack 
– fields given by names and object references 

• Machine code: program state is a large array of bytes 
and a finite number of registers 



Compilation Performs Automated  
Data Refinement 

x = y + 7 * z iload 2 
iconst 7 
iload 3 
imul 
iadd 
istore 1 

x  0 
y  5 
z  8 

1  0 
2  5 
3  8 

x  61 
y  5 
z  8 

1  61 
2  5 
3  8 

Data Refinement  

Function R 

[[x = y + 7 * z]] = 

s 

s’ 

c 

c' 
If interpreting program P 
leads from s to s’ 
then running the compiled code [[P]] 
leads from R(s) to R(s’) 

P: 



Inductive Argument for Correctness 

R 

x = y + 7 * z 

x  0 
y  5 
z  8 

x  61 
y  5 
z  8 

s1 

s2 

y = z + 1 

R 

x  61 
y  9 
z  8 

s3 R 

[[x = y + 7 * z]] 

0  0 
1  5 
2  8 

0  61 
1  5 
2  8 

c1 

c2 

iload 3; iconst 1; iadd; istore 2  

0  61 
1  9 
2  8 

c3 

(R may need to be a relation, not just function) 



A Simple Theorem 

  P : S  S  is a program meaning function 
  Pc : C  C    is meaning function for the compiled program 
  R : S  C is data representation function 
Let sn+1 = P(sn),  n = 0,1,… be interpreted execution 
Let cn+1 = P(cn),  n = 0,1,… be compiled execution 
 

 

 

 

Theorem: If 

– c0 = R(s0) 

– for all s,   Pc(R(s)) = R(P(s)) 

then cn = R(cn) for all n. 

Proof: immediate, by induction.      R is often called simulation relation. 



Example of a Simple R 

• Let the receiver, the parameters, and local 
variables, in their order of declaration, be  
x1, x2 … xn 

• Then R maps program state with only integers 
like this: 

x1  v1 
x2  v2 
x3  v3 
   … 
xn  vn 

0        v1 
1        v2 
2        v3 
          … 
(n-1)  vn 

R 



R for Booleans 

• Let the received, the parameters, and local 
variables, in their order of declaration, be  
x1, x2 … xn  

• Then R maps program state like this, where x1 
and x2 are integers but x3 and x4 are Booleans: 

x1  3 
x2  9 
x3  true 

x4  false 

0   3 
1   9 
2   1 
3   0 

R 



R  that depends on Program Point 

def main(x:Int) { 
  var res, y, z: Int 
  if (x>0) { 
    y = x + 1 
    res = y 
  } else { 
     z = -x - 10 
     res = z 
  } 
  return res; 
} 

x      v1 
res  v2 
y      v3 
z      v4 

R 

0  v1 
1  v2 
2  v3 
3  v4 

x      v1 
res  v2 
y      v3 
z      v4 

R1 
0  v1 
1  v2 
2  v3 

x      v1 
res  v2 
y      v3 
z      v4 

R2 
0  v1 
1  v2 
2  v4 

Map y,z to same slot. 
Consume fewer slots! 



Packing Variables into Memory 

• If values are not used at the same time, we 
can store them in the same place 

• This technique arises in 

– Register allocation: store frequently used values 
in a bounded number of fast registers 

– ‘malloc’ and ‘free’ manual memory management: 
free releases memory to be used for later objects 

– Garbage collection, e.g. for JVM, and .NET as well 
as languages that run on top of them (e.g. Scala) 



Register Machines 
Better for most purposes than stack machines 

– closer to modern CPUs (RISC architecture) 

– closer to control-flow graphs 

– simpler than stack machine 

Example: ARM architecture  

Directly 
Addressable 

RAM 
(large - GB, 
slow, even 

with caches) 

R0,R1,…,R31 
A few fast 
registers 

http://en.wikipedia.org/wiki/ARM architecture


Basic Instructions of Register Machines 

Ri  Mem[Rj] load 

Mem[Rj] Ri store 

Ri  Rj  * Rk compute: for an operation * 

 

 

Efficient register machine code uses as few loads 
and stores as possible. 



State Mapped to Register Machine 
Both dynamically allocated heap and stack expand  

– heap need not be contiguous; can request more 
memory from the OS if needed 

– stack grows downwards 

Heap is more general:  
• Can allocate, read/write, and deallocate,  

in any order 
• Garbage Collector does deallocation automatically 

– Must be able to find free space among used one, 
group free blocks into larger ones (compaction),… 

Stack is more efficient: 
• allocation is simple: increment, decrement  
• top of stack pointer (SP) is often a register 
• if stack grows towards smaller addresses:  

– to allocate N bytes on stack (push):    SP := SP - N  
– to deallocate N bytes on stack (pop): SP := SP + N  

 

Stack 

Heap 

Constants 

Static Globals 

free memory 

SP 

0 

50kb 

10MB 

1 GB 

Exact picture may 
depend on  
hardware and OS 



JVM vs General Register Machine Code 
Naïve Correct Translation 

R1  Mem[SP] 

SP = SP + 4 

R2  Mem[SP] 

R2  R1 * R2 

Mem[SP]  R2 

imul 

JVM: Register Machine: 



Register Allocation 



How many variables?     

  x,y,z,xy,xz,res1 

x = m[0] 

y = m[1] 

xy = x * y 

z = m[2] 

yz = y*z 

xz = x*z 

res1 = xy + yz 

m[3] = res1 + xz 

Do we need 6 distinct registers if we wish to avoid load and stores? 

x = m[0] 

y = m[1] 

xy = x * y 

z = m[2] 

yz = y*z 

y = x*z      // reuse y 

x = xy + yz       // reuse x 

m[3] = x + y 

can do it with 5 only! 7 variables: 
x,y,z,xy,yz,xz,res1 


