
Range Analysis Domain for BigInt
Domain values D include:

• bounded intervals of integers: [a,b]

• intervals unbounded from one side (-∞,b] , [a,∞)

• empty set, denoted 

• the set of all integers, denoted T

Formally, if Z denotes integers, then

D = {,T} U { [a,b] | a,bZ}
 U {(-∞,b] | bZ}
 U {[a,∞) | aZ}

D is an infinite set!

Sequences in Analysis
are Monotonically Growing

Transfer functions (describe how statements affect elements of
D) should be monotonic:
if we start with a representation of a larger set of states, the
representation of the resulting set of states should also be larger

x = x + 2

d1 ≤ d2 implies [[x=x+2]](d1) ≤ [[x=x+2]](d2)

We start from  everywhere except entry
So in first step, the values can only grow
 ≤ d2 implies [[x=x+2]]() ≤ [[x=x+2]](d2)
Values computed in second step are also bigger
If xn = Fn() then x0 =  ≤ x1

 xn ≤ xn+1 / F

 F(xn) ≤ F(xn+1) i.e. xn+1 ≤ xn+2

x: [a,b]

x: [a+2,b+2]

How Long Does Analysis Take?

• We explore this question by comparing

– range analysis: maintain intervals

– constant propagation:
maintains indication whether the value is constant

Iterating Range Analysis

 x = 1

 while (x < n) {
 x = x + 2
 }

Find the number of updates range analysis needs to
stabilize in the following code

n = 1000

Iterating Range Analysis

 x = 1

 while (x < n) {
 x = x + 2
 }

For unknown program
inputs and unbounded
domains, such analysis
need not terminate!

n = readInput() //anything, so n becomes T

One solution: “smaller” domain

Now, if we assume that any number can be entered from
the user, what is now the number of steps?

Range Analysis with
Finite Set of Endpoints

Pick a set W of “interesting” interval end-points
Example:

 W = {-128, 0, 127}

D = {,T} U { [a,b] | a,bW, a ≤ b}
 U {(-∞,b] | b W}
 U {[a,∞) | a W}

D is a finite set! How many elements does it have?

Domain Lattice Diagram for this W: 14 elements

∞

∞

∞
∞

∞

∞

∞ ∞ T

Re-Run Analysis with Finite Endpoint Set

 x = 1
 n = 1000
 while (x < n) {
 x = x + 2
 }

What is the number of updates?

 x = 1
 n = readInt()
 while (x < n) {
 x = x + 2
 }

Constant Propagation Domain
Domain values D are:

– intervals [a,a], denoted simply ‘a’

– empty set, denoted  and set of all integers T

Formally, if Z denotes integers, then

 D = {,T} U { a | aZ}
D is an infinite set

 T



1 0 -1 -2 2 … …

Constant Propagation Transfer Functions

x = y + z

For each variable (x,y,z) and each
CFG node (program point)
we store:  , a constant, or T

abstract class Element
case class Top extends Element
case class Bot extends Element
case class Const(v:Int) extends Element
var facts : Map[Nodes,Map[VarNames,Element]]
 what executes during analysis of x=y+z :
oldY = facts(v1)("y")
oldZ = facts(v1)("z")
newX = tableForPlus(oldY, oldZ)
facts(v2) = facts(v2) join facts(v1).updated("x", newX)

def tableForPlus(y:Element, z:Element) =
(x,y) match {
case (Const(cy),Const(cz)) => Const(cy+cz)
case (Bot,_) => Bot
case (_,Bot) => Bot
case (Top,Const(cz)) => Top
case (Const(cy),Top) => Top
}

table for +:

Run Constant Propagation

 x = 1

 while (x < n) {
 x = x + 2
 }

n = 1000

What is the number of updates?

 x = 1
 n = readInt()
 while (x < n) {
 x = x + 2
 }

Observe

• Range analysis with W = {-128, 0, 127} has a
finite domain

• Constant propagation has infinite domain
(for every integer constant, one element)

• Yet, constant propagation finishes sooner!

– it is not about the size of the domain

– it is about the height

Height of Lattice: Length of Max. Chain

∞

∞

∞ ∞

∞

∞
∞ ∞ T

 T



1 0 -1 -2 2

height=2
size =∞

height=5
size=14

… …

Chain of Length n

• A set of elements x0,x1 ,..., xn in D that are linearly
ordered, that is x0 < x1 < ... < xn

• A lattice can have many chains. Its height is the
maximum n for all the chains

• If there is no upper bound on lengths of chains,
we say lattice has infinite height

• Any monotonic sequence of distinct elements has
length at most equal to lattice height
– including sequence occuring during analysis!

– such sequences are always monotonic

In constant propagation, each value
can change only twice

 x = 1
 n = 1000
 while (x < n) {
 x = x + 2
 }



1 0 -1 -2 2

height=2
size =∞ … …

consider value for x
before assignment
• Initially: 
• changes 1st time to: 1

• change 2nd time to: T
total changes: two (height)

var facts : Map[Nodes,Map[VarNames,Element]]

T

Total number of changes bounded by: height∙|Nodes| ∙|Vars|

Exercise

B32 – the set of all 32-bit integers

What is the upper bound for number of changes in
the entire analysis for:

– 3 variables,

– 7 program points

for these two analyses:

1) constant propagation for constants from B32

2) The following domain D:

 D = {} U { [a,b] | a,b B32 , a ≤ b}

Height of B32

D = {} U { [a,b] | a,b B32 , a ≤ b}

One possible chain of maximal length:



…

[MinInt,MaxInt]

Initialization Analysis

uninitialized

first
initialization

initialized

What does javac say to this:
class Test {

 static void test(int p) {

 int n;

 p = p - 1;

 if (p > 0) {

 n = 100;

 }

 while (n != 0) {

 System.out.println(n);

 n = n - p;

 }

 }

}

Test.java:8: variable n might not have been initialized
 while (n > 0) {
 ^
1 error

Program that compiles in java
class Test {

 static void test(int p) {

 int n;

 p = p - 1;

 if (p > 0) {

 n = 100;

 }

 else {

 n = -100;

 }

 while (n != 0) {

 System.out.println(n);

 n = n - p;

 }

 }

}

We would like variables to be
initialized on all execution paths.

Otherwise, the program execution
could be undesirable affected by the
value that was in the variable initially.

We can enforce such check using
initialization analysis.

What does javac say to this?

 static void test(int p) {

 int n;

 p = p - 1;

 if (p > 0) {

 n = 100;

 }

 System.out.println(“Hello!”);

 if (p > 0) {

 while (n != 0) {

 System.out.println(n);

 n = n - p;

 }

 }

 }

Initialization Analysis
T indicates presence of flow from states where
variable was not initialized:

• If variable is possibly uninitialized, we use T

• Otherwise (initialized, or unreachable): 

class Test {

 static void test(int p) {

 int n;

 p = p - 1;

 if (p > 0) {

 n = 100;

 }

 else {

 n = -100;

 }

 while (n != 0) {

 System.out.println(n);

 n = n - p;

 }

 }

}

If var occurs anywhere but left-hand side
of assignment and has value T, report error

Sketch of Initialization Analysis

• Domain: for each variable, for each program point:
D = {,T}

• At program entry, local variables: T ; parameters: 

• At other program points: each variable: 

• An assignment x = e sets variable x to 

• lub (join,) of any value with T gives T

– uninitialized values are contagious along paths

–  value for x means there is definitely no possibility for
accessing uninitialized value of x

Run initialization analysis Ex.1

int n;

p = p - 1;

if (p > 0) {

 n = 100;

}

while (n != 0) {

 n = n - p;

}

Run initialization analysis Ex.2

int n;

p = p - 1;

if (p > 0) {

 n = 100;

}

if (p > 0) {

 n = n - p;

}

Liveness Analysis

dead

live

dead

last use

first
initialization

dead
live

Variable is dead if its current value will not be used in the future.
If there are no uses before it is reassigned or the execution ends,
then the variable is surely dead at a given point.

Example:

x = y + x

if (x > y)

What is Written and What Read

Purpose:
Register allocation:

find good way to decide
which variable should go
to which register at what
point in time.

How Transfer Functions Look

Initialization: Forward Analysis

Liveness: Backward Analysis

while (there was change)
 pick edge (v1,statmt,v2) from CFG
 such that facts(v1) has changed
 facts(v2)=facts(v2) join transferFun(statmt, facts(v1))
}

while (there was change)
 pick edge (v1,statmt,v2) from CFG
 such that facts(v2) has changed
 facts(v1)=facts(v1) join transferFun(statmt, facts(v2))
}

Example

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

res1 = xy + yz

m[3] = res1 + xz

Data Representation Overview

Original and Target Program have
Different Views of Program State

• Original program:
– local variables given by names (any number of them)
– each procedure execution has fresh space for its variables

(even if it is recursive)
– fields given by names

• Java Virtual Machine
– local variables given by slots (0,1,2,…), any number
– intermediate values stored in operand stack
– each procedure call gets fresh slots and stack
– fields given by names and object references

• Machine code: program state is a large array of bytes
and a finite number of registers

Compilation Performs Automated
Data Refinement

x = y + 7 * z iload 2
iconst 7
iload 3
imul
iadd
istore 1

x  0
y  5
z  8

1  0
2  5
3  8

x  61
y  5
z  8

1  61
2  5
3  8

Data Refinement

Function R

[[x = y + 7 * z]] =

s

s’

c

c'
If interpreting program P
leads from s to s’
then running the compiled code [[P]]
leads from R(s) to R(s’)

P:

Inductive Argument for Correctness

R

x = y + 7 * z

x  0
y  5
z  8

x  61
y  5
z  8

s1

s2

y = z + 1

R

x  61
y  9
z  8

s3 R

[[x = y + 7 * z]]

0  0
1  5
2  8

0  61
1  5
2  8

c1

c2

iload 3; iconst 1; iadd; istore 2

0  61
1  9
2  8

c3

(R may need to be a relation, not just function)

A Simple Theorem

 P : S  S is a program meaning function
 Pc : C  C is meaning function for the compiled program
 R : S  C is data representation function
Let sn+1 = P(sn), n = 0,1,… be interpreted execution
Let cn+1 = P(cn), n = 0,1,… be compiled execution

Theorem: If

– c0 = R(s0)

– for all s, Pc(R(s)) = R(P(s))

then cn = R(cn) for all n.

Proof: immediate, by induction. R is often called simulation relation.

Example of a Simple R

• Let the receiver, the parameters, and local
variables, in their order of declaration, be
x1, x2 … xn

• Then R maps program state with only integers
like this:

x1  v1
x2  v2
x3  v3
 …
xn  vn

0  v1
1  v2
2  v3
 …
(n-1)  vn

R

R for Booleans

• Let the received, the parameters, and local
variables, in their order of declaration, be
x1, x2 … xn

• Then R maps program state like this, where x1
and x2 are integers but x3 and x4 are Booleans:

x1  3
x2  9
x3  true

x4  false

0  3
1  9
2  1
3  0

R

R that depends on Program Point

def main(x:Int) {
 var res, y, z: Int
 if (x>0) {
 y = x + 1
 res = y
 } else {
 z = -x - 10
 res = z
 }
 return res;
}

x  v1
res  v2
y  v3
z  v4

R

0  v1
1  v2
2  v3
3  v4

x  v1
res  v2
y  v3
z  v4

R1
0  v1
1  v2
2  v3

x  v1
res  v2
y  v3
z  v4

R2
0  v1
1  v2
2  v4

Map y,z to same slot.
Consume fewer slots!

Packing Variables into Memory

• If values are not used at the same time, we
can store them in the same place

• This technique arises in

– Register allocation: store frequently used values
in a bounded number of fast registers

– ‘malloc’ and ‘free’ manual memory management:
free releases memory to be used for later objects

– Garbage collection, e.g. for JVM, and .NET as well
as languages that run on top of them (e.g. Scala)

Register Machines
Better for most purposes than stack machines

– closer to modern CPUs (RISC architecture)

– closer to control-flow graphs

– simpler than stack machine

Example: ARM architecture

Directly
Addressable

RAM
(large - GB,
slow, even

with caches)

R0,R1,…,R31
A few fast
registers

http://en.wikipedia.org/wiki/ARM architecture

Basic Instructions of Register Machines

Ri  Mem[Rj] load

Mem[Rj] Ri store

Ri  Rj * Rk compute: for an operation *

Efficient register machine code uses as few loads
and stores as possible.

State Mapped to Register Machine
Both dynamically allocated heap and stack expand

– heap need not be contiguous; can request more
memory from the OS if needed

– stack grows downwards

Heap is more general:
• Can allocate, read/write, and deallocate,

in any order
• Garbage Collector does deallocation automatically

– Must be able to find free space among used one,
group free blocks into larger ones (compaction),…

Stack is more efficient:
• allocation is simple: increment, decrement
• top of stack pointer (SP) is often a register
• if stack grows towards smaller addresses:

– to allocate N bytes on stack (push): SP := SP - N
– to deallocate N bytes on stack (pop): SP := SP + N

Stack

Heap

Constants

Static Globals

free memory

SP

0

50kb

10MB

1 GB

Exact picture may
depend on
hardware and OS

JVM vs General Register Machine Code
Naïve Correct Translation

R1  Mem[SP]

SP = SP + 4

R2  Mem[SP]

R2  R1 * R2

Mem[SP]  R2

imul

JVM: Register Machine:

Register Allocation

How many variables?

 x,y,z,xy,xz,res1

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

xz = x*z

res1 = xy + yz

m[3] = res1 + xz

Do we need 6 distinct registers if we wish to avoid load and stores?

x = m[0]

y = m[1]

xy = x * y

z = m[2]

yz = y*z

y = x*z // reuse y

x = xy + yz // reuse x

m[3] = x + y

can do it with 5 only! 7 variables:
x,y,z,xy,yz,xz,res1

