

Lexical Analysis Summary

- lexical analyzer maps a stream of characters into a stream of tokens
 while doing that, it typically needs only bounded memory
- we can specify tokens for a lexical analyzers using regular expressions
- it is not difficult to construct a lexical analyzer manually
 - we give an example
 - for manually constructed analyzers, we often use the first character to decide on token class; a notion first(L) = { a | aw in L }
- we follow the longest match rule: lexical analyzer should eagerly accept the longest token that it can recognize from the current point
- it is possible to automate the construction of lexical analyzers; the starting point is conversion of regular expressions to automata
 - tools that automate this construction are part of compiler-compilers, such as JavaCC described in the Tiger book
 - automated construction of lexical analyzers from regular expressions is an example of compilation for a *domain-specific language*

Formal Languages vs Scala

Formal language theory:

- A alphabet
- A* words over A
- $W_1 \cdot W_2$ or $W_1 W_2$
- ϵ empty word
- $c \in A \rightarrow c \in A^*$
- |w| word length
- $W_{p..q} = W_{(p)}W_{(p+1)}...W_{(q-1)}$ $W = W_{(0)}W_{(1)}...W_{(|w|-1)}$
- $L \subseteq A^*$ language

Scala representation:

- A type
- List[A] (or Seq[A]...)
- w1 ::: w2
- List()
- if c:A then List(c):List[A]
- w.length
- w.slice(p,q)
 w(i)
- L : List[List[A]] (for finite L)

Formal Languages vs Scala

Formal language theory:

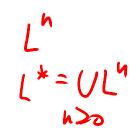
$$L_1 \subseteq A^* , L_2 \subseteq A^*$$
$$L_1 \cdot L_2 = \{u_1 u_2 | u_1 \in L_1 , u_2 \in L_2 \}$$

Scala (for finite languages)

type Lang[A] = List[List[A]]
def product[A](L1 : Lang[A],
 L2 : Lang[A]) : Lang[A] =
for (w1 <- L1; w2 <- L2)
 yield (w1 ::: w2)</pre>

{ Peter, Paul, Mary} • { France, Germany} =
 {PeterFrance, PeterGermany,
 PaulFrance, PaulGermany,
 MaryFrance, MaryGermany}

val p = product(List("Peter".toList, "Paul".toList, "Mary".toList), List("France".toList, "Germany".toList))



Fact about Indexing Concatenation

Concatenation of w and v has these letters:

$$W_{(0)} \dots W_{(|w|-1)} V_{(0)} \dots V_{(|v|-1)}$$

 $(wv)_{(i)} = w_{(i)}$, if i < |w|

 $(wv)_{(i)} = v_{(i-|w|)}$, if $i \ge |w|$

Star of a Language. Exercise with Proof

 $L^* = \{ w_1 \dots w_n \mid n \ge 0, w_1 \dots w_n \in L \}$ = $U_n L^n$ where $L^{n+1} = L L^n$, $L^0 = \{\epsilon\}$. Obviously also $L^{n+1} = L^n L$ **Exercise.** Show that {a,ab}*= S where $S = \{w \in \{a,b\}^* \mid \forall 0 \le i < |w| \text{. if } w_{(i)} = b \text{ then: } i > 0 \text{ and } w_{(i-1)} = a\}$ **Proof.** We show $\{a,ab\}^* \subseteq S$ and $S \subseteq \{a,ab\}^*$. **1)** $\{a,ab\}^* \subseteq S$: We show that for all n, $\{a,ab\}^n \subseteq S$, by induction on n- Base case, n=0. $\{a,ab\}^0 = \{\epsilon\}$, so i< |w| is always false and '->' is true. - Suppose $\{a,ab\}^n \subseteq S$. Showing $\{a,ab\}^{n+1} \subseteq S$. Let $w \in \{a,ab\}^{n+1}$. Then w = vw' where w' \in {a,ab}ⁿ, v \in {a,ab}. Let i < |w| and w_(i)=b. $v_{(0)}$ =a, so $w_{(0)}$ =a and thus $w_{(0)}$!=b. Therefore i > 0. Two cases: 1.1) v=a. Then $w_{(i)}=w'_{(i-1)}$. By I.H. i-1>0 and $w'_{(i-2)}=a$. Thus $w_{(i-1)}=a$. 1.2) v=ab. If i=1, then $w_{(i-1)}=w_{(0)}=a$, as needed. Else, i>1 so $w'_{(i-2)}$ =b and by I.H. $w'_{(i-3)}$ =a. Thus $w_{(i-1)} = (vw')_{(i-1)} = w'_{(i-3)} = a$.

Proof Continued

 $S = \{w \in \{a,b\}^* \mid \forall 0 \le i < |w|. \text{ if } w_{(i)} = b \text{ then: } i > 0 \text{ and } w_{(i-1)} = a\}$ For the second direction, we first prove:

(*) If $w \in S$ and w = w'v then $w' \in S$.

Proof. Let i < |w'|, $w'_{(i)} = b$. Then $w_{(i)} = b$ so $w_{(i-1)} = a$ and thus $w'_{(i-1)} = a$. 2) S $\subseteq \{a,ab\}^*$. We prove, by induction on n, that for all n,

for all w, if $w \in S$ and n = |w| then $w \in \{a,ab\}^*$.

- Base case: n=0. Then w is empty string and thus in {a,ab}*.

- Let n>0. Suppose property holds for all k < n. Let $w \in S$, |w|=n. There are two cases, depending on the last letter of w.

2.1) w=w'a. Then w' \in S by (*), so by IH w' \in {a,ab}*, so w \in {a,ab}*.

2.2) w=vb. By w \in S, w_(|w|-2)=a, so w=w'ab. By (*), w' \in S, by IH w' \in {a,ab}*, so w \in {a,ab}*.

In any case, $w \in \{a,ab\}^*$. We proved the entire equality.

Regular Expressions

- One way to denote (often infinite) languages
- Regular expression is an expression built from:
 - empty language 💋
 - $\{\epsilon\}$, denoted just ϵ
 - $\{a\}$ for a in Σ , denoted simply by a
 - union, denoted | or, sometimes, +
 - concatenation, as multiplication (dot), or omitted
 - Kleene star * (repetition)
- E.g. identifiers: letter (letter | digit)* (letter, digit are shorthands from before)

Kleene (from Wikipedia)

Stephen Cole Kleene

(January 5, 1909, Hartford, Connecticut, United States – January 25, 1994, Madison, Wisconsin) was an American mathematician who helped lay the foundations for theoretical computer science. One of many distinguished students of Alonzo Church, Kleene, along with Alan Turing, Emil Post, and others, is best known as a founder of the branch of mathematical logic known as recursion theory. Kleene's work grounds the study of which functions are computable. A number of mathematical concepts are named after him: <u>Kleene hierarchy</u>, <u>Kleene algebra</u>, the <u>Kleene</u> star (Kleene closure), Kleene's recursion theorem and the Kleene fixpoint theorem. He also invented regular expressions, and was a leading American advocate of mathematical intuitionism.

These RegExp extensions preserve definable languages. Why?

• [a..z] = a|b|...|z (use ASCII ordering)

(also other shorthands for finite languages)

- e? (optional expression)
- e+ (repeat at least once)
- $e^{k..*} = e^k e^*$ $e^{p..q} = e^p (\epsilon | e)^{q-p}$
- complement: !e (do not match) need to go to automaton
- intersection: e1 & e1 (match both) = ! (e1|e1)
- quantification: can prove previous theorem automatically!

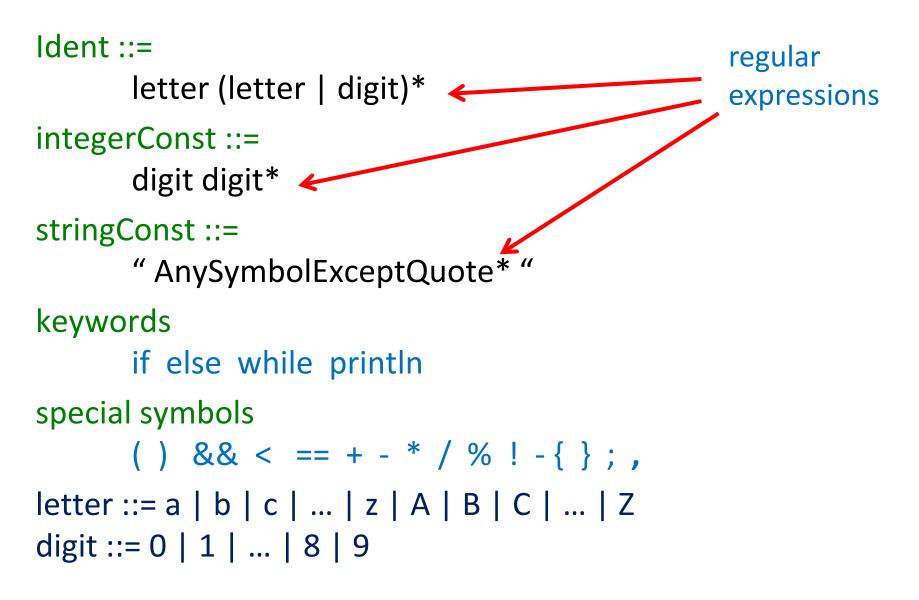
 $\{a,ab\}^* = \{w \in \{a,b\}^* \mid \forall i. \ w_{(i)} = b \dashrightarrow i > 0 \ \& \ w_{(i-1)} = a\}$

http://www.brics.dk/mona/

While Language – Example Program

```
num = 13;
while (num > 1) {
  println("num = ", num);
  if (num % 2 == 0) {
    num = num / 2;
  } else {
    num = 3 * num + 1;
  }
}
```

Tokens (Words) of the While Language



Manually Constructing Lexers by example

Lexer input and Output

Stream of Char-s (lazy List[Char])

```
class CharStream(fileName : String){
val file = new BufferedReader(
   new FileReader(fileName))
 var current : Char = ' '
 var eof : Boolean = false
```

```
def next = {
 if (eof)
  throw EndOfInput("reading" + file)
 val c = file.read()
 eof = (c == -1)
```

```
current = c.asInstanceOf[Char]
```

next // init first char

e

class Lexer(ch : CharStream) { var current : Token **def** next : Unit = { lexer code goes here

d

3

0

LF.

lexer

Stream of **Token**-s

=

0

sealed abstract class Token id3 case class ID(content : String) // "id3" extends Token case class IntConst(value : Int) // 10 while extends Token case class AssignEQ() '=' id3 extends Token case class CompareEQ // '==' 10 extends Token case class MUL() extends Token // "*" case class PLUS() extends Token // + case clas LEQ extends Token // '<=' case class OPAREN extends Token //(case class CPAREN extends Token //) case class IF extends Token // 'if' case class WHILE extends Token case class EOF extends Token // End Of File

Identifiers and Keywords

A < ch < 'z'
if (isLetter) {
 b = new StringBuffer
 while (isLetter || isDigit) {
 b.append(ch.current)
 ch.next</pre>

keywords.lookup(b.toString) {
 case None => token=ID(b.toString)
 case Some(kw) => token=kw

regular expression for identifiers:

, letter (letter|digit)*

Keywords look like identifiers, but are simply indicated as keywords in language definition

A constant Map from strings to keyword tokens

if not in map, then it is ordinary identifier

```
Integer Constants and Their Value
                          regular expression for integers:
                                    digit digit*
if (isDigit) {
 k = 0
          'q' → 9
 while (isDigit) {
  k = 10*k + toDigit(ch.current)
  ch.next 🔨
 token = IntConst(k)
}
```

Deciding which Token

- How do we know when we are supposed to analyze string, when integer sequence etc?
- Manual construction: use lookahead (next symbol in stream) to decide on token class
- compute first(e) symbols with which e can start
- check in which first(e) current token is
- If L is a language, then

first(L) = $\{a \mid \exists v. a v \in L\}$

first of a regexp

- Given regular expression e, how to compute first(e)?
 - use automata (we will see this next)
 - rules that directly compute them (also work for grammars, we will see them for parsing)

a,b,c,d,e

- Examples of first(e) computation:
- → first(ab*) = a
 - first($ab^*|c$) = {a,c}
 - $first(a*b*c) = {a,b,c}$
 - first(((cb $a^*c^*)d^*e$)) = {c,a,d,e}
- Notion of nullable (r), whether , that is, whether empty string belongs to the regular language.

first symbols of words in a regexp first : RegExp ->(2^A) first(e) \subset A **Define recursively:** $first(\emptyset) = \emptyset$ $first(\varepsilon) = \emptyset$ $first(a) = \{a\}$ $first(e_1 | e_2) = first(e_1) \cup first(e_2)$ first(e^{*}) = first(e) $first(e_1 e_2) = \begin{cases} first(e_1), & \epsilon \notin e_1 \\ first(e_1) \cup first(e_2), & \epsilon \in e_1 \end{cases}$

Can regular expr derive empty word nullable : RegExp \rightarrow {0,1} **Define recursively:** nullable(\emptyset) = 0 nullable(ε) = 1 nullable(a) = 0nullable($e_1 | e_2$) = nullable(e_1) \vee nullable(e_2) nullable(e^*) = 1 nullable($e_1 e_2$) = nullable(e_1) \land nullable(e_2)

Converting Well-Behaved Regular Expression into Programs

Regular Expression

- a
- r1 r2
- (r1|r2)

r*

Code

- if (current=a) next else error
- (code for r1);
 (code for r2)
- if (current in first(r1)) code for r1
 else code for r2
- while(current in first(r)) code for r

Subtleties in General Case

- Sometimes first(e1) and first(e2) overlap for two different token classes:
- Must remember where we were and go back, or work on recognizing multiple tokens at the same time
- Example: comment begins with division sign, so we should not 'drop' division token when checking for comment!

Decision Tree to Map Symbols to Tokens

```
ch.current match {
 case '(' => {current = OPAREN; ch.next; return}
 case ')' => {current = CPAREN; ch.next; return}
 case '+' => {current = PLUS; ch.next; return}
 case '/' => {current = DIV; ch.next; return}
 case '*' => {current = MUL; ch.next; return}
 case '=' => { // more tricky because there can be =, ==
  ch.next
  if (ch.current=='=') {ch.next; current = CompareEQ; return}
  else {current = AssignEQ; return}
 case '<' => { // more tricky because there can be <, <=
  ch.next
```

```
if (ch.current=='=') {ch.next; current = LEQ; return}
else {current = LESS; return}
```

Decision Tree to Map Symbols to Tokens

```
ch.current match {
```

- **case** '(' => {current = OPAREN; ch.next; return}
- **case** ')' **=>** {current = CPAREN; ch.next; return}
- **case** '+' => {current = PLUS; ch.next; return}
- **case** '/' **=>** {current = DIV; ch.next; return}
- **case** '*' => {current = MUL; ch.next; return}
- case '=' => { // more tricky because there can be =, ==

```
ch.next
```

```
if (ch.current == '=') {ch.next; current = CompareEQ; return}
else {current = AssignEQ; return}
```

case '<' => { // more tricky because there can be <, <=
 ch.next</pre>

if (ch.current == '=') {ch.next; current = LEQ; return}

else {current = LESS; return}

What happens if we omit it?

consider input '<= '

Skipping Comments

```
11-11-2
if (ch.current='/') {
ch.next
                           5/3
if (ch.current='/') {
  while (!isEOL && !isEOF) {
  ch.next
  }
} else { <//>
```

Nested comments? /* foo /* bar */ baz */

Longest Match (Maximal Munch) Rule

- There are multiple ways to break input chars into tokens
- Consider language with identifiers ID, <=, <, =
- Consider these input characters:

interpreters <= compilers</pre>

- These are some ways to analyze it into tokens:
 - ID(interpreters) LEQ ID(compilers)
 ID(inter) ID(preters) LESS AssignEQ ID(com) ID(pilers)
 ID(i) ID(nte) ID(rpre) ID(ter) LESS AssignEQ ID(co) ID(mpi) ID(lers)
- This is resolved by **longest match rule**:

If multiple tokens could follow, take the longest token possible

Consequences of Longest Match Rule

- Consider language with three operators:

In practice, this is not a problem
 we can always insert extra spaces

Longest Match Exercise

- Recall the maximal munch (longest match) rule: lexer should eagerly accept the longest token that it can recognize from the current point
- Consider the following specification of tokens, the numbers in parentheses gives the name of the token given by the regular expression

(1) a(ab)* (2) b*(ac)* (3) cba (4) c+

- Use the maximal munch rule to tokenize the following strings according to the specification
 - caccabacaccbabc
 - cccaababaccbabccbabac
- If we do not use the maximal munch rule, is another tokenization possible?
- Give an example of a regular expression and an input string, where the regular expression is able to split the input strings into tokens, but it is unable to do so if we use the maximal munch rule.

Token Priority

- What if our token classes intersect?
- Longest match rule does not help
- Example: a keyword is also an identifier
- Solution **priority**: order all tokens, if overlap, take one with higher priority

• Example: if it looks both like keyword and like identifier, then it is a keyword (we say so)