
Review: Printing Trees into Bytecodes
To evaluate e1*e2 interpreter

– evaluates e1

– evaluates e2

– combines the result using *

Compiler for e1*e2 emits:
– code for e1 that leaves result on the stack, followed by

– code for e2 that leaves result on the stack, followed by

– arithmetic instruction that takes values from the stack
and leaves the result on the stack

 def compile(e : Expr) : List[Bytecode] = e match { // ~ postfix printer

 case Var(id) => List(ILoad(slotFor(id)))

 case Plus(e1,e2) => compile(e1) ::: compile(e2) ::: List(IAdd())

 case Times(e1,e2) => compile(e1) ::: compile(e2) ::: List(IMul())

 … }

Shorthand Notation for Translation

[e1 + e2] =

 [e1]

 [e2]

 iadd

[e1 * e2] =

 [e1]

 [e2]

 imul

Code Generation for Control Structures

Sequential Composition

How to compile statement sequence?

s1; s2; … ; sN

• Concatenate byte codes for each statement!
def compileStmt(e : Stmt) : List[Bytecode] = e match {
 …

 case Sequence(sts) =>
 for { st <- sts; bcode <- compileStmt(st) }
 yield bcode

}

i.e. sts flatMap compileStmt

semantically: (sts map compileStmt) flatten

Compiling Control: Example

static void count(int from,
 int to,
 int step) {

 int counter = from;

 while (counter < to) {

 counter = counter + step;

 }

}

 0: iload_0

 1: istore_3

 2: iload_3

 3: iload_1

 4: if_icmpge 14

 7: iload_3

 8: iload_2

 9: iadd

 10: istore_3

 11: goto 2

 14: return

We need to see how to:

• translate boolean expressions

• generate jumps for control

Representing Booleans

Java bytecode verifier does not make hard distinction between
booleans and ints

– can pass one as another in some cases if we hack .class files

As when compiling to assembly, we need to choose how to
represent truth values

We adopt a convention in our code generation for JVM:

The generated code uses 'int' to represent boolean values in:
local variables, parameters, and intermediate stack values.

In such cases, the code ensures that these int variables always
either

0, representing false, or

1, representing true

Truth Values for Relations: Example

static boolean test(int x, int y){

 return (x < y);

}

 0: iload_0

 1: iload_1

 2: if_icmpge 9

 5: iconst_1

 6: goto 10

 9: iconst_0

 10: ireturn

if_icmpge instruction from spec
if_icmp<cond>

Branch if int comparison succeeds

format: if_icmp<cond>

 branchbyte1

 branchbyte2

if_icmpeq = 159 (0x9f)

if_icmpne = 160 (0xa0)

if_icmplt = 161 (0xa1)

if_icmpge = 162 (0xa2)

if_icmpgt = 163 (0xa3)

if_icmple = 164 (0xa4)

Operand Stack:

 ..., value1, value2 → ...

Both value1 and value2 must be of type int.
They are both popped from the operand
stack and compared. All comparisons are
signed.

The results of the comparison are as follows:

 if_icmpeq succeeds if and only if value1 = value2

 if_icmpne succeeds if and only if value1 ≠ value2

 if_icmplt succeeds if and only if value1 < value2

 if_icmple succeeds if and only if value1 ≤ value2

 if_icmpgt succeeds if and only if value1 > value2

 if_icmpge succeeds if and only if value1 ≥ value2

If the comparison succeeds, the unsigned
branchbyte1 and branchbyte2 are used to
construct a signed 16-bit offset, where the offset is
calculated to be (branchbyte1 << 8) | branchbyte2.
Execution then proceeds at that offset from the
address of the opcode of this if_icmp<cond>
instruction. The target address must be that of an
opcode of an instruction within the method that
contains this if_icmp<cond> instruction.

Otherwise, execution proceeds at the address of
the instruction following this if_icmp<cond>
instruction.

Compiling Relational Expressions

 def compile(e : Expr) : List[Bytecode] = e match { …
 case Times(e1,e2) => compile(e1) ::: compile(e2) ::: List(IMul())

 case Comparison(e1, op, e2) => {
 val nFalse = getFreshLabel(); val nAfter = getFreshLabel()
 compile(e1)
 :::compile(e2)
 :::List(if_icmp_instruction(converse(op), nFalse),
 IConst1,

 goto_instruction(nAfter),

label(nFalse), IConst0,

label(nAfter)) // result: 0 or 1 added to stack
 }
 } A separate pass resolves labels before emitting class file

is there a dual
translation?

ifeq instruction from spec
if<cond>

Branch if int comparison with zero succeeds

 if<cond>

 branchbyte1

 branchbyte2

ifeq = 153 (0x99)

ifne = 154 (0x9a)

iflt = 155 (0x9b)

ifge = 156 (0x9c)

ifgt = 157 (0x9d)

ifle = 158 (0x9e)

Operand Stack

 ..., value →...

The value must be of type int. It is popped
from the operand stack and compared
against zero. All comparisons are signed.

The results of the comparisons are as follows:

 ifeq succeeds if and only if value = 0

 ifne succeeds if and only if value ≠ 0

 iflt succeeds if and only if value < 0

 ifle succeeds if and only if value ≤ 0

 ifgt succeeds if and only if value > 0

 ifge succeeds if and only if value ≥ 0

If the comparison succeeds, the unsigned
branchbyte1 and branchbyte2 are used to
construct a signed 16-bit offset, where the offset
is calculated to be (branchbyte1 << 8) |
branchbyte2. Execution then proceeds at that
offset from the address of the opcode of this
if<cond> instruction. The target address must be
that of an opcode of an instruction within the
method that contains this if<cond> instruction.

Otherwise, execution proceeds at the address of
the instruction following this if<cond> instruction.

Compiling If Statement
using compilation of 0/1 for condition

def compileStmt(e : Stmt) : List[Bytecode] = e match { …

 case If(cond,tStmt,eStmt) => {
 val nElse = getFreshLabel(); val nAfter = getFreshLabel()
 compile(cond)
 :::List(Ifeq(nElse))
 :::compileStmt(tStmt)
 :::List(goto(nAfter))
 :::List(label(nElse))
 :::compileStmt(eStmt)
 :::List(label(nAfter))
 }

}

Compiling If Statement
using compilation of 0/1 for condition

Shorthand math notation for the previous function:

[if (cond) tStmt else eStmt] =

 [cond]
 Ifeq(nElse)
 [tStmt]
 goto(nAfter)

nElse: [eStmt]
nAfter:

Compiling While Statement
using compilation of 0/1 for condition

[while (cond) stmt] =

nStart: [cond]
 Ifeq(nExit)
 [stmt]
 goto(nStart)

nExit:

give a translation with only one jump during loop

Example result for while loop

static boolean condition(int n)
{ ... }

static void work(int n) { ... }

static void test() {

 int n = 100;

 while (condition(n)) {

 n = n - 11;

 work(n);

 }

}

0: bipush 100

2: istore_0

3: iload_0

4: invokestatic #4;// condition:(I)Z

7: ifeq 22

10: iload_0

11: bipush 11

13: isub

14: istore_0

15: iload_0

16: invokestatic #5; work:(I)V

19: goto 3

22: return

Exercise: LOOP with EXIT IF

Oberon-2 has a statement

LOOP

 code1

 EXIT IF cond

 code2

END

which executes a loop and
exits when the condition is
met. This generalizes 'while'
and 'do … while'

Give a translation scheme for
the LOOP construct.

Apply the translation to

j = i

LOOP

 j = j + 1

 EXIT IF j > 10

 s = s + j

END

z = s + j - i

solution

[LOOP

 code1

 EXIT IF cond

 code2

END] =

start: [code1]

 [cond]

 ifneq exit

 [code2]

 goto start

exit:

How to compile complex boolean
expressions expressed using &&,|| ?

Bitwise Operations

 10110

& 11011

= 10010

 10110

| 11011

= 11111

These operations always
evalute both arguments.

• In contast, && ||
operations only
evaluate their second
operand if necessary!

• We must compile this
correctly. It is not
acceptable to emit code
that always evaluates
both operands of &&,||

What does this program do?

 static boolean bigFraction(int x, int y) {

 return ((y==0) | (x/y > 100));

 }

 public static void main(String[] args) {

 boolean is = bigFraction(10,0);

 }

Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Test.bigFraction(Test.java:4)
 at Test.main(Test.java:19)

should be ||

What does this function do?

 static int iterate() {

 int[] a = new int[10];

 int i = 0;

 int res = 0;

 while ((i < a.length) & (a[i] >= 0)) {

 i = i + 1;

 res = res + 1;

 }

 return res;

}

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 10
 at Test.iterate(Test.java:16)
 at Test.main(Test.java:25)

should be &&

Compiling Bitwise Operations - Easy

[e1 & e2] =

 [e1]

 [e2]

 iand

[e1 | e2] =

 [e1]

 [e2]

 ior

[e1 && e2] =

 [e1]

 [e2]

 …

not allowed to evaluate e2 if e1 is false!
Also for (e1 || e2): if e1 true, e2 not evaluated

Conditional Expression

Scala:

 if (c) t else e

Java, C:

 c ? t : e

Meaning:

– c is evaluated

– if c is true, then t is
evaluated and returned

– if c is false, then e is
evaluated and returned

• Meaning of &&, ||:

(p && q) ==
 if (p) q else false

(p || q) ==

 if (p) true else q

• To compile ||,&&
transform them into ‘if’
expression

Compiling If Expression

• Same as for if statement, even though code
for branches will leave values on the stack:

[if (cond) t else e] =

 [cond]
 Ifeq(nElse)
 [t]
 goto(nAfter)

nElse: [e]
nAfter:

Java Example for Conditional

int f(boolean c, int x, int y) {

 return (c ? x : y);

}

 0: iload_1

 1: ifeq 8

 4: iload_2

 5: goto 9

 8: iload_3

 9: ireturn

Compiling &&

[if (cond) t else e] =

 [cond]
 Ifeq(nElse)
 [t]
 goto(nAfter)

nElse: [e]
nAfter:

[p && q] =
[if (p) q else false] =

 [p]
 Ifeq(nElse)
 [q]
 goto(nAfter)

nElse: iconst_0
nAfter:

Compiling ||

[if (cond) t else e] =

 [cond]
 Ifeq(nElse)
 [t]
 goto(nAfter)

nElse: [e]
nAfter:

[p || q] =
[if (p) true else q] =

 [p]
 Ifeq(nElse)
 iconst_1
 goto(nAfter)

nElse: [q]
nAfter:

true, false, variables

[true] =

 iconst_1

[false] =

 iconst_0

for boolean variable b, for
which n = slot(b)

[b] =

 iload_n

[b = e] = (assignment)

 [e]

 istore_n

Example: triple &&

Let x,y,z be in slots 1,2,3

Show code for assignment

 y = (x && y) && z

Does the sequence differ
for assignment

 y = x && (y && z)

 iload_1
 ifeq n1
 iload_2
 goto n2
n1: iconst_0
n2: ifeq n3
 iload_3
 goto n4
n3: iconst_0
n4:

